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INTRODUCTION

Progress in artificial intelligence depends on knowing what our systems can do, how well
they can do it, and under what conditions their behavior changes. Evaluation is therefore not
an afterthought to AI development but its epistemic foundation. Every claim of progress—
whether about improved reasoning, better alignment, or broader capability—rests on some act
of measurement. Yet despite the centrality of evaluation, the field’s tools for measurement
remain strikingly underdeveloped. Benchmarks proliferate faster than we can understand them,
and leaderboards offer scores without scales, turning scientific assessment into a race of numbers
detached from theory.

Contemporary evaluation practice in AI largely relies on finite collections of datasets and
metrics—benchmarks that serve as de facto instruments of measurement. These instruments are
often designed without formal notions of validity, reliability, or calibration. A model’s average
accuracy across a dataset says little about why it succeeds, where it fails, or how its abilities
generalize beyond the test. The result is an evaluation ecosystem that produces motion without
understanding. Without a coherent measurement framework, we risk mistaking leaderboard
ascent for scientific progress.

Other sciences have faced similar crises of interpretation and responded by formalizing the
theory of measurement. Psychology turned to psychometrics, developing Item Response Theory
(IRT) and latent variable modeling to distinguish true ability from test difficulty. Education
systems built statistical foundations for comparing learners across tests, time, and populations.
The physical sciences standardized their instruments and units to make measurement traceable
and comparable across laboratories. Each of these fields transformed ad hoc evaluation into
measurement science—a discipline grounded in inference, uncertainty, and calibration. AI now
stands at a similar inflection point.

AI Measurement Sciences (AIMS) seeks to provide this missing foundation. It treats AI evalua-
tion as an inferential problem: given observed responses of models to tasks, what can we infer
about their latent capabilities, the properties of the tasks, and the conditions of generalization? It
asks how to design evaluation systems that are reliable (stable under sampling and perturbation),
valid (measuring intended constructs rather than artifacts), and interpretable (enabling mean-
ingful comparison across time, domains, and model families). The central research questions
are therefore not only empirical but epistemological:

– How can we represent and estimate the latent constructs underlying AI performance?

– How can we quantify uncertainty, bias, and contamination in existing evaluation systems?
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– What are the statistical and organizational conditions under which measurement becomes
trustworthy enough to guide AI development and governance?

This dissertation argues that answering these questions requires a probabilistic science of
evaluation—one that unites methods from psychometrics, statistics, and machine learning.
The goal is not merely to build better benchmarks but to establish a framework for scientific
decision making about AI systems: when to trust, when to doubt, and how to act.
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2 FOUNDATIONS OF MEASUREMENT

INFO INTENDED LEARNING OUTCOMES

By the end of this chapter, you will be able to:

1. Articulate Borsboom’s realist framework for validity and explain why measurement requires warrant
inference about latent constructs.

2. Distinguish between Item Response Theory, factor models, paired comparison systems (Elo, Bradley-Terry),
and network models (GGM, Ising).

3. Explain why the Rasch model holds a special status as “the measurement model” through the sufficiency of
sum scores, specific objectivity, and test-free measurement.

4. Derive the sufficiency theorem for the Rasch model and explain its implications for AI benchmark evaluation.
5. Compare the prescriptive (Rasch school) and descriptive (general IRT) approaches to measurement and

articulate when each is appropriate.
6. Trace the historical development from Thurstone (1927) through Rasch (1960) to modern network psycho-

metrics.
7. Connect classical measurement concepts (reliability, validity, dimensionality) to contemporary AI benchmark

evaluation.
8. Apply measurement theory to analyze whether AI benchmarks satisfy the requirements for scientific mea-

surement.
9. Implement basic IRT models in Python and visualize item characteristic curves.

10. Evaluate the assumptions underlying AI leaderboards and identify potential violations of measurement
principles.

LIGHTBULB VIDEO OVERVIEW

A visual tour of the key concepts in this chapter — from response matrices and item characteristic curves to
factor models and benchmark heterogeneity.

../animations/ch1/chapter1_narrated.mp4

INFO NOTATION

Throughout this chapter, we use the following conventions:

Symbol Meaning Domain

𝜃𝑖 or 𝑈𝑖 Latent ability of person/model 𝑖 ℝ
𝛽𝑗 or 𝑉𝑗 Difficulty of item 𝑗 ℝ

../animations/ch1/chapter1_narrated.mp4
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𝑎𝑗 Discrimination parameter of item 𝑗 ℝ+

𝑐𝑗 Guessing parameter of item 𝑗 [0, 1]
𝑌𝑖𝑗 Binary response (0 = incorrect, 1 =

correct)
{0, 1}

𝑆𝑖 = ∑𝑗 𝑌𝑖𝑗 Sum score (total correct) for person 𝑖 {0, 1, … , 𝑀}
𝑁 Number of persons/models ℕ
𝑀 Number of items/questions ℕ
𝜎(𝑥) = 1

1+𝑒−𝑥 Logistic sigmoid function (0, 1)
Φ(𝑥) Standard normal CDF (0, 1)

2.1 The Measurement Problem in AI
Consider the following scenario: You have evaluated 100 language models on a benchmark
consisting of 1,000multiple-choice questions. Eachmodel either answers each question correctly
(1) or incorrectly (0), producing a 100 × 1000 binary response matrix 𝑌. You compute each
model’s accuracy—the proportion of correct answers—and rank the models accordingly.

Have you measured anything?

The answer is not as obvious as it might seem. You have certainly scored the models: you
assigned numbers to them based on their performance. But measurement, in the scientific
sense, requires more than assigning numbers. It requires that those numbers correspond to some
underlying property—a latent construct—in a principled way.

2.1.1 Scoring vs. Measuring

The distinction between scoring and measuring is fundamental to understanding why AI
evaluation needs measurement science. Consider an analogy from physics: if you measure the
temperature of water with a mercury thermometer, the height of the mercury column is a
score—a number you can read off the instrument. But you trust this score as a measurement of
temperature because you understand the relationship between mercury expansion and thermal
energy.

In AI evaluation, we often have scores without this deeper understanding. When GPT-4
achieves 86% accuracy on MMLU and Claude achieves 84%, we cannot immediately conclude
that GPT-4 has more “intelligence” or “capability” than Claude. Several questions must be
answered first:

1. What latent construct does MMLU measure? Is it general intelligence, factual knowledge,
test-taking ability, or something else entirely?

2. Is the construct unidimensional? Can model performance be characterized by a single
number, or do different questions tap into different capabilities?



2 FOUNDATIONS OF MEASUREMENT 11

3. Are the scores comparable across different test conditions? Would the ranking change if
we used different questions from the same domain?

4. What is the measurement error? How much of the score difference reflects true differ-
ences in capability versus noise?

These questions have been central to psychology and education for over a century. The field
of psychometrics developed sophisticated tools—Item Response Theory, factor analysis, validity
frameworks—precisely to address them. AI evaluation is now confronting the same fundamental
challenges.

2.1.2 The Response Matrix

The basic data structure in measurement is the response matrix 𝑌 ∈ {0, 1}𝑁×𝑀, where:

– Each row 𝑖 ∈ {1, … , 𝑁} represents a test taker (in AI: a model)
– Each column 𝑗 ∈ {1, … , 𝑀} represents an item (in AI: a benchmark question)
– Each entry 𝑌𝑖𝑗 ∈ {0, 1} indicates whether test taker 𝑖 answered item 𝑗 correctly

𝑌 =
⎛⎜⎜⎜⎜
⎝

𝑌11 𝑌12 ⋯ 𝑌1𝑀
𝑌21 𝑌22 ⋯ 𝑌2𝑀

⋮ ⋮ ⋱ ⋮
𝑌𝑁1 𝑌𝑁2 ⋯ 𝑌𝑁𝑀

⎞⎟⎟⎟⎟
⎠

The naive approach to evaluation computes row means (model accuracies) and ranks models
accordingly. But the responsematrix contains far more information than these marginal statistics.
The pattern of responses—which models succeed on which questions—reveals structure that
aggregate scores obscure.

1 #| autorun: true
2 #| echo: false
3 import numpy as np
4 import matplotlib.pyplot as plt
5 plt.rcParams.update({
6 "figure.figsize": (3.5, 3),
7 "figure.dpi": 150,
8 "figure.autolayout": True,
9 "font.size": 8,

10 "font.family": "serif",
11 "mathtext.fontset": "cm",
12 "axes.labelsize": 8,
13 "axes.titlesize": 9,
14 "xtick.labelsize": 7,
15 "ytick.labelsize": 7,
16 "legend.fontsize": 7,
17 "lines.linewidth": 1.0,
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18 })

1 #| label: response-matrix-visualization
2 #| autorun: true
3 #| fig-cap: "Response matrix from a language model evaluation. Rows are models (sorted

by total score), columns are questions (sorted by difficulty). The diagonal
structure suggests underlying ability and difficulty parameters."

↪

↪

4

5 # Simulate a response matrix with Rasch model structure
6 N, M = 50, 200 # 50 models, 200 questions
7

8 # Generate latent abilities and difficulties
9 theta = np.random.normal(0, 1, N) # model abilities

10 beta = np.random.normal(0, 1.5, M) # question difficulties
11

12 # Generate responses via Rasch model
13 prob = 1 / (1 + np.exp(-(theta[:, None] - beta[None, :])))
14 Y = (np.random.random((N, M)) < prob).astype(int)
15

16 # Sort by row and column sums
17 row_order = np.argsort(Y.sum(axis=1))[::-1]
18 col_order = np.argsort(Y.sum(axis=0))[::-1]
19 Y_sorted = Y[row_order][:, col_order]
20

21 # Plot
22 fig, ax = plt.subplots(1, 1)
23 ax.imshow(Y_sorted, aspect='auto', cmap='Blues', interpolation='nearest')
24 ax.set_xlabel('Questions (sorted by difficulty)')
25 ax.set_ylabel('Models (sorted by ability)')
26 ax.set_title('Sorted Response Matrix')
27

28 plt.show()

When we sort the response matrix by row sums (model abilities) and column sums (item
difficulties), a characteristic diagonal structure emerges. High-ability models answer most
questions correctly; easy questions are answered correctly by most models. This structure is
not guaranteed—it depends on the data satisfying certain assumptions—but when present, it
suggests that a simple latent variable model may adequately describe the data.

2.1.3 Why AI Evaluation Needs Measurement Science

The problems facing AI evaluation today mirror those that psychology confronted in the early
20th century:

1. Construct definition: What does it mean to measure “reasoning” or “common sense”?
Psychology developed validity frameworks to address this question.
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2. Test bias: Are some benchmark questions unfair to certain models due to training data or
architecture? Educational testing developed differential item functioning (DIF) analysis.

3. Score comparability: Can we compare models evaluated on different benchmark subsets?
Psychometrics developed test equating methods.

4. Efficiency: How can we evaluate models with fewer questions? Computerized adaptive
testing (CAT) emerged from IRT.

5. Reliability: How stable are our rankings under different conditions? Test-retest reliability
and standard error of measurement quantify this.

The tools developed in psychometrics are not merely analogies—they are directly applicable
to AI evaluation. The response matrix from an LLM benchmark has the same structure as
the response matrix from a standardized test. The statistical models that describe human test
performance can describe AI benchmark performance.

INFO THE CENTRAL CLAIM OF AIMS

AI benchmarks are tests in the psychometric sense. The methods developed over a century of educational and
psychological measurement—Item Response Theory, factor analysis, validity frameworks—apply directly to AI
evaluation. Understanding and applying these methods is essential for trustworthy AI measurement.

2.1.4 Evaluation Datasets Used in This Book

Throughout this book, we work with several large-scale evaluation corpora that represent
distinct yet complementary perspectives on measuring model behavior. These datasets provide
the empirical foundation for our analyses.

HELM Benchmark Suite. We use 22 datasets drawn from 5 HELM repositories—Classic, Lite,
AIR-Bench, Thai Exam, and MMLU—encompassing both capability and safety measurements.
In total, this collection includes 172 test takers (models) and 217,268 questions. We focus
on responses that can be graded dichotomously (correct/incorrect), as is the case for most
benchmarks throughmetrics such as exact match or equivalent indicator. To ensure stable estimation,
we remove duplicate questions, those with identical response patterns, or with fewer than 30 test
takers; exclude test takers with fewer than 30 total responses; and treat unattempted questions
as missing values.

Open LLM Leaderboard. We use data from the Open LLM Leaderboard (Hugging Face, 2025),
a public benchmarking platform that evaluates open large language models on a standardized
suite of academic and practical tasks. The dataset spans models submitted between 2022 and
2025, covering parameter scales from small models (<5B parameters) to frontier systems (>140B
parameters). In total, it includes 4,416 distinct language models, each evaluated on 21,176
benchmark questions from six suites: MMLU-Pro, OpenLLM-Math, MUSR, BBH, IFEval,
and GPQA.
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LMarena Preference Data. In addition to correctness-based evaluation, we incorporate pairwise
preference data from the LMarena dataset, which provides human or automated judgments of
relative model quality. Each example corresponds to a prompt presented to two competing
models, with an annotation indicating which response is preferred. The dataset includes
211,728 unique prompts, 3,779 unique model pairs, and 179 distinct models. These preference
judgments provide a complementary view focusing on relative comparisons rather than absolute
correctness.

Agent Leaderboard. We include Agent Leaderboard data from Galileo AI, which evaluates
the agentic performance of large language models across tool-use and reasoning scenarios. This
dataset contains approximately 34,700 rows, where each row corresponds to a question, the
model’s response, and a numerical score judged by GPT-4. The evaluation covers multiple
agentic subjects with roughly 100 questions each, including approximately 40 distinct models
such as Gemini-2.5, Claude-3.5, GPT-4.1/4.5, Llama-4, and Qwen-2.5.

Together, these four sources enable unified modeling of accuracy, preference, and agency within a
shared latent-factor evaluation framework.

2.2 Borsboom’s Warrant Inference Framework
Before we can measure something, we must understand what measurement means. This
seemingly philosophical question has profound practical implications. If we do not have a clear
conception of validity, we cannot evaluate whether our benchmarks actually measure what we
intend.

The Dutch psychometrician Denny Borsboom has developed the most influential contemporary
framework for understanding measurement validity. His approach, which we call the realist
framework, provides the philosophical foundation for the AIMS approach to AI evaluation.

2.2.1 Validity as Truth, Not Evidence

Traditional approaches to validity, following Cronbach and Messick, treat validity as a matter
of evidence accumulation. Under this view, a test is valid to the extent that we have gathered
evidence supporting its intended interpretation. Validity becomes a matter of degree: more
evidence means more validity.

Borsboom rejects this view. He argues that validity is fundamentally about truth, not evidence:

INFO BORSBOOM’S DEFINITION OF VALIDITY

A test is valid for measuring an attribute if and only if:

1. The attribute exists, and
2. Variations in the attribute causally produce variations in the measurement outcomes.

This is a yes/no property: either the attribute causes the test responses, or it does not. Evidence is relevant to
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our knowledge of validity, but validity itself is about the causal structure of the world.

This definition has several important implications:

Existence requirement. The attribute being measured must actually exist. If we claim to
measure “general intelligence” but there is no such thing—if intelligence is better understood
as a collection of independent abilities—then no test can validly measure it. The existence
question is empirical, not definitional.

Causation requirement. The attribute must cause variation in test responses. It is not enough for
test scores to be correlated with the attribute; the attribute must be the reason for the variation.
This rules out tests that are merely predictive of outcomes without measuring the underlying
construct.

Truth vs. evidence distinction. We can have strong evidence that a test is valid and yet be wrong.
Conversely, a test might be valid even if we have limited evidence. This distinction matters
because it separates the epistemological question (what do we know?) from the ontological
question (what is true?).

2.2.2 The Warrant Inference Problem

Measurement involves an inference from observed data to latent constructs:

Observed: 𝑌𝑖𝑗
inference
−−−−→ Latent: 𝜃𝑖

This inference requires a warrant: a justified belief that the test measures what it claims to
measure. The warrant connects the measurement procedure (administering test items, recording
responses) to the theoretical construct (ability, intelligence, reasoning).

Following Toulmin’s model of argumentation, a measurement argument has the structure:

– Claim: “Model 𝑖 has ability 𝜃𝑖 = 2.3”
– Data: “Model 𝑖 answered 47 of 60 questions correctly”
– Warrant: “The test measures the ability construct, and the scoring procedure accurately

converts responses to ability estimates”
– Backing: “The test items were written by domain experts, the psychometric model fits

the data, ability estimates are stable across different item subsets”

The warrant is the critical element. Without it, we have no basis for interpreting test scores as
measurements of the intended construct. The backing provides evidence for the warrant but
does not replace it.
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2.2.3 Semantic Indeterminacy

Borsboom identifies a fundamental problem in measurement: semantic indeterminacy. The
meaning of a test score depends on which measurement system we adopt, but there is no
compelling argument for any particular system.

Consider three measurement frameworks:

1. Classical Test Theory (CTT): A test score 𝑋 = 𝑇 + 𝐸 consists of a true score 𝑇 plus
random error 𝐸. The true score is defined as the expected value of the test score over
hypothetical replications.

2. Item Response Theory (IRT): Test responses are generated by a latent ability 𝜃 through a
probabilistic model 𝑃(𝑌𝑖𝑗 = 1|𝜃𝑖, 𝛽𝑗). The ability parameter is a property of the person
that exists independently of any particular test.

3. Network Models: There is no latent variable. Test items are causally connected to each
other, and correlations arise from these direct connections rather than a common cause.

These frameworks make different claims about what test scores mean:

Framework What does the score represent?

CTT Expected value over test replications
IRT Position on a latent continuum
Network Summary of a network state

The frameworks are not merely different parameterizations of the same model—they make
different ontological commitments about what exists and what causes what. Yet we often
cannot empirically distinguish between them.

INFO IMPLICATIONS FOR AI EVALUATION

When we say “GPT-4 has reasoning ability of 2.3 logits,” what do we mean? The answer depends on our
measurement framework:

– CTT interpretation: If we tested GPT-4 many times on parallel forms, its average score would correspond to
2.3 logits.

– IRT interpretation: GPT-4 possesses an underlying reasoning capacity that, when combined with item
difficulties, generates the observed response pattern.

– Network interpretation: GPT-4’s responses to reasoning questions form a pattern that we summarize with
the number 2.3, but there is no single “reasoning ability” being measured.

These interpretations have different implications for how we should use and trust the measurement.
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2.2.4 Construct Validity and the Nomological Network

If a construct cannot be directly observed, how do we know it exists? Cronbach and Meehl pro-
posed that constructs are defined by their place in a nomological network—a web of theoretical
relationships connecting the construct to other constructs and observable indicators.

For example, “reasoning ability” might be defined by relationships like:

– Higher reasoning ability → better performance on logic puzzles
– Higher reasoning ability → better performance on mathematical proofs
– Higher reasoning ability → correlation with general intelligence
– Higher reasoning ability → development with education

The construct gains meaning through these relationships. If a test score behaves as the theory
predicts—if it correlates with the right things and not with the wrong things—we have evidence
that it measures the intended construct.

For AI evaluation, this suggests we need theoretical frameworks that specify:

1. What capabilities should be related to benchmark performance
2. What capabilities should be independent of benchmark performance
3. How capabilities should develop with model scale or training
4. How capabilities should transfer across domains

Without such frameworks, we have benchmark scores without meaning.

2.3 Probabilistic Models for Measurement
Measurement requires a model connecting observable responses to latent constructs. This
section surveys the major families of probabilistic models used in measurement: Item Response
Theory, factor models, paired comparison systems, network models, and hierarchical models.
These models provide the statistical machinery for extracting latent variables from response
data.

2.3.1 Item Response Theory

Item Response Theory (IRT) models the probability of a correct response as a function of
person ability and item characteristics. The key insight is that both persons and items can be
characterized by parameters on a common scale.

2.3.1.1 The Rasch Model (1PL)

The simplest IRT model is the Rasch model, also called the one-parameter logistic (1PL)
model:
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INFO DEFINITION: RASCH MODEL

𝑃(𝑌𝑖𝑗 = 1|𝜃𝑖, 𝛽𝑗) =
exp(𝜃𝑖 − 𝛽𝑗)

1 + exp(𝜃𝑖 − 𝛽𝑗)
= 𝜎(𝜃𝑖 − 𝛽𝑗)

where:

– 𝜃𝑖 ∈ ℝ is the ability of person 𝑖
– 𝛽𝑗 ∈ ℝ is the difficulty of item 𝑗
– 𝜎(⋅) is the logistic sigmoid function

The model has an elegant interpretation: the probability of success depends only on the difference
between ability and difficulty. When 𝜃𝑖 = 𝛽𝑗, the probability is exactly 0.5—the person has a
50% chance of answering correctly. When 𝜃𝑖 > 𝛽𝑗, the probability exceeds 0.5; when 𝜃𝑖 < 𝛽𝑗,
it falls below 0.5.

Figure 2.1
Plate diagram for the Rasch model. Shaded nodes are observed; open nodes are latent. Plates indicate replication
over persons (𝑖) and items (𝑗).

The function 𝑃(𝜃) = 𝜎(𝜃 − 𝛽) is called the Item Characteristic Curve (ICC). It describes how
the probability of success changes with ability for a fixed item.

1 #| label: icc-rasch
2 #| autorun: true
3 #| fig-cap: "Item Characteristic Curves for Rasch model items with different

difficulties. All curves have the same shape (slope), differing only in their
location."

↪

↪

4

5 import numpy as np
6 import matplotlib.pyplot as plt
7
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8 def sigmoid(x):
9 return 1 / (1 + np.exp(-x))

10

11 theta = np.linspace(-4, 4, 200)
12 difficulties = [-2, -1, 0, 1, 2]
13

14 plt.figure()
15 for beta in difficulties:
16 prob = sigmoid(theta - beta)
17 plt.plot(theta, prob, label=f'$\\beta = {beta}$', linewidth=2)
18

19 plt.axhline(y=0.5, color='gray', linestyle='--', alpha=0.5)
20 plt.xlabel('Ability ($\\theta$)', fontsize=12)
21 plt.ylabel('$P(Y = 1)$', fontsize=12)
22 plt.legend(title='Item Difficulty')
23 plt.grid(True, alpha=0.3)
24 plt.show()

2.3.1.2 The Two-Parameter Logistic Model (2PL)

The Rasch model assumes all items have the same discrimination—the same slope of the ICC.
The two-parameter logistic model relaxes this assumption:

INFO DEFINITION: 2PL MODEL

𝑃(𝑌𝑖𝑗 = 1|𝜃𝑖, 𝑎𝑗, 𝛽𝑗) = 𝜎(𝑎𝑗(𝜃𝑖 − 𝛽𝑗))

where 𝑎𝑗 > 0 is the discrimination parameter for item 𝑗.

Items with higher discrimination are better at distinguishing between persons of different
abilities. Their ICCs are steeper, meaning small changes in ability produce large changes in
response probability.

1 #| label: icc-2pl
2 #| autorun: true
3 #| fig-cap: "Item Characteristic Curves for 2PL model items with different

discriminations. Higher discrimination (steeper slope) means the item better
distinguishes between ability levels."

↪

↪

4

5 theta = np.linspace(-4, 4, 200)
6

7 # Items with same difficulty but different discriminations
8 beta = 0
9 discriminations = [0.5, 1.0, 1.5, 2.0]

10
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Figure 2.2
Plate diagram for the 2PL model. Each item now has both a difficulty 𝛽𝑗 and a discrimination 𝑎𝑗 parameter.

11 plt.figure()
12 for a in discriminations:
13 prob = sigmoid(a * (theta - beta))
14 plt.plot(theta, prob, label=f'$a = {a}$', linewidth=2)
15

16 plt.axhline(y=0.5, color='gray', linestyle='--', alpha=0.5)
17 plt.axvline(x=0, color='gray', linestyle='--', alpha=0.5)
18 plt.xlabel('Ability ($\\theta$)', fontsize=12)
19 plt.ylabel('$P(Y = 1)$', fontsize=12)
20 plt.title('2PL Model: Effect of Discrimination ($\\beta = 0$)', fontsize=14)
21 plt.legend(title='Discrimination')
22 plt.grid(True, alpha=0.3)
23 plt.show()

2.3.1.3 The Three-Parameter Logistic Model (3PL)

For multiple-choice tests, even low-ability test-takers may answer correctly by guessing. The
three-parameter logistic model adds a lower asymptote:

INFO DEFINITION: 3PL MODEL

𝑃(𝑌𝑖𝑗 = 1|𝜃𝑖, 𝑎𝑗, 𝛽𝑗, 𝑐𝑗) = 𝑐𝑗 + (1 − 𝑐𝑗)𝜎(𝑎𝑗(𝜃𝑖 − 𝛽𝑗))

where 𝑐𝑗 ∈ [0, 1] is the guessing (or pseudo-chance) parameter.

For a 4-option multiple-choice item, we might expect 𝑐𝑗 ≈ 0.25 if low-ability test-takers guess
randomly.
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Figure 2.3
Plate diagram for the 3PL model. The guessing parameter 𝑐𝑗 sets a lower asymptote on the response probability.

1 #| label: icc-3pl
2 #| autorun: true
3 #| fig-cap: "Comparison of 1PL, 2PL, and 3PL models. The 3PL has a non-zero lower

asymptote representing guessing."↪

4

5 theta = np.linspace(-4, 4, 200)
6

7 # Compare the three models
8 a, beta, c = 1.5, 0, 0.25
9

10 p_1pl = sigmoid(theta - beta)
11 p_2pl = sigmoid(a * (theta - beta))
12 p_3pl = c + (1 - c) * sigmoid(a * (theta - beta))
13

14 plt.figure()
15 plt.plot(theta, p_1pl, label='1PL (Rasch)', linewidth=2)
16 plt.plot(theta, p_2pl, label='2PL', linewidth=2)
17 plt.plot(theta, p_3pl, label='3PL', linewidth=2)
18

19 plt.axhline(y=0.5, color='gray', linestyle='--', alpha=0.3)
20 plt.axhline(y=c, color='gray', linestyle=':', alpha=0.5, label=f'Guessing = {c}')
21 plt.xlabel('Ability ($\\theta$)', fontsize=12)
22 plt.ylabel('$P(Y = 1)$', fontsize=12)
23 plt.title('Comparison of IRT Models', fontsize=14)
24 plt.legend()
25 plt.grid(True, alpha=0.3)
26 plt.show()

2.3.2 Factor Models

Factor models provide an alternative perspective on latent variable measurement. While IRT
focuses on item-level response probabilities, factor models focus on the covariance structure of
responses.
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2.3.2.1 The Linear Factor Model

The classical linear factor model assumes observed variables are linear combinations of latent
factors plus noise:

INFO DEFINITION: LINEAR FACTOR MODEL

𝑋𝑗 = 𝜆𝑗1𝐹1 + 𝜆𝑗2𝐹2 + ⋯ + 𝜆𝑗𝐾𝐹𝐾 + 𝜖𝑗

where:

– 𝑋𝑗 is the observed score on item 𝑗
– 𝐹𝑘 are latent factors (abilities, traits)
– 𝜆𝑗𝑘 are factor loadings
– 𝜖𝑗 is item-specific error

In matrix notation: 𝑋 = Λ𝐹 + 𝜖, where Λ is the 𝑀 × 𝐾 matrix of factor loadings.

2.3.2.2 The Logistic Factor Model

For binary data, we use a logistic link function:

INFO DEFINITION: LOGISTIC FACTOR MODEL

𝑃(𝑌𝑖𝑗 = 1|𝑈𝑖, 𝑉𝑗, 𝑍𝑗) = 𝜎(𝑈⊤
𝑖 𝑉𝑗 + 𝑍𝑗)

where:

– 𝑈𝑖 ∈ ℝ𝐾 is the latent factor vector for person 𝑖
– 𝑉𝑗 ∈ ℝ𝐾 is the factor loading vector for item 𝑗
– 𝑍𝑗 ∈ ℝ is the item intercept

This is the model used in later chapters of AIMS for multidimensional AI evaluation.

2.3.2.3 Connection Between IRT and Factor Analysis

The Rasch model is equivalent to a one-factor logistic model with equal loadings:

INFO THEOREM: RASCH-FACTOR EQUIVALENCE

The Rasch model 𝑃(𝑌𝑖𝑗 = 1) = 𝜎(𝜃𝑖 − 𝛽𝑗) is equivalent to a single-factor logistic model with 𝑈𝑖 = 𝜃𝑖, 𝑉𝑗 = 1
for all 𝑗, and 𝑍𝑗 = −𝛽𝑗.
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Figure 2.4
Plate diagram for the logistic factor model. The latent factor vector 𝑈𝑖 interacts with item-specific loadings 𝑉𝑗 and
intercepts 𝑍𝑗 to produce responses.

More generally, multidimensional IRT models and logistic factor models are closely related,
differing primarily in parameterization and estimation approach.

2.3.2.4 The Structure Matrix

After fitting a multidimensional factor model, we obtain estimated item loadings ̂𝑉𝑗 that describe
how each item relates to the latent factors. However, raw factor loadings require standardization
for interpretable comparisons across items and benchmarks.

The structure matrix 𝑆 captures the correlation between each item’s latent response and each
factor:

INFO DEFINITION: STRUCTURE MATRIX

For a logistic factor model, the latent response 𝑌 ∗
𝑖𝑗 can be written as 𝑌 ∗

𝑖𝑗 = 𝑈⊤
𝑖 𝑉𝑗 + 𝑍𝑗 + 𝜖𝑖𝑗, where 𝜖𝑖𝑗 follows a

logistic distribution with variance 𝜋2/3. The structure matrix entry 𝑆𝑗𝑘 is the correlation between item 𝑗’s
latent response and factor 𝑘:

𝑆𝑗𝑘 = Cor(𝑌 ∗
𝑖𝑗, 𝑈𝑖𝑘) =

(𝑉 ⊤
𝑗 Σ)𝑘

√Σ𝑘𝑘√𝑉 ⊤
𝑗 Σ𝑉𝑗 + 𝜋2/3

where Σ = Cov(𝑈) is the factor covariance matrix.

The structure matrix has several important properties:

1. Bounded values: Each entry 𝑆𝑗𝑘 ∈ [−1, 1], making comparisons intuitive.
2. Interpretability: High positive values indicate the item strongly measures that factor;

negative values indicate inverse relationships.
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3. Clustering: Items with similar structure vectors measure similar constructs and can be
grouped together.

For AI benchmarks, the structure matrix reveals which questions tap into which capabilities.
Two questions may both be “correct/incorrect” but load on different factors—one measuring
reasoning, another measuring factual recall. This has important implications for how we
interpret aggregate benchmark scores.

2.3.2.5 Item Clustering and Benchmark Heterogeneity

With the structure matrix in hand, we can cluster items into latent subgroups using standard clus-
tering algorithms such as Gaussian Mixture Models (GMM). Each cluster represents a group of
items sharing similar factor loadings—analogous to “skills” or “themes” within the benchmark.
This approach is analogous to exploratory factor analysis in psychometrics, revealing whether
benchmarks are essentially unidimensional or composed of multiple, potentially antagonistic,
latent skills.

Exclamation BENCHMARK HETEROGENEITY

A key insight from factor analysis applied to AI benchmarks is that benchmarks are rarely homogeneous.
Intentionally or not, they often combine items that test different capabilities, and even a single benchmark item
may test a combination of capabilities.

Two models with identical mean scores may excel on different capability dimensions. For example, one model
might be strong in reasoning but weak in factual recall, while another may have the reverse profile. When item
clusters show weak or negative correlations with each other, the benchmark-level mean score becomes neither
informative nor accurate about subgroup performance.

Within each benchmark, we can quantify inter-construct correlations by:

1. Clustering items based on their structure vectors usingGMMwith BIC formodel selection
2. Computing cluster means for each model (average accuracy on items in each cluster)
3. Correlating cluster means across models to assess construct overlap

Strongly positive inter-cluster correlations indicate overlapping constructs, while weak or
negative correlations suggest distinct and possibly conflicting capabilities being aggregated by
the benchmark’s mean score. This multidimensional pattern explains why two models with
identical overall accuracies may excel on entirely different skill axes.

Factor models assign a feature vector to each item (the structure vector), allowing items to be
clustered via standard algorithms. This helps interpret evaluation results that would otherwise
be obscured by aggregate scores.



2 FOUNDATIONS OF MEASUREMENT 25

2.3.3 Paired Comparison Models: Elo and Bradley-Terry

Not all measurement data comes in the form of item responses. In many settings, we observe
pairwise comparisons: which of two items is preferred, which of two players wins. These settings
require different models.

2.3.3.1 The Bradley-Terry Model

The Bradley-Terry model (1952) is the foundational model for paired comparisons:

INFO DEFINITION: BRADLEY-TERRY MODEL

𝑃(item 𝑖 beats item 𝑗) = exp(𝜃𝑖)
exp(𝜃𝑖) + exp(𝜃𝑗)

= 𝜎(𝜃𝑖 − 𝜃𝑗)

where 𝜃𝑖 is the “strength” or “quality” of item 𝑖.

The model has the same mathematical form as the Rasch model, but the interpretation differs:
instead of a person answering an item, we have two items competing against each other.

Figure 2.5
Plate diagram for the Bradley-Terry model. A comparison outcome 𝑌𝑐 depends on the strengths 𝜃𝑖 and 𝜃𝑗 of the
two competitors in each pair.

2.3.3.2 The Elo Rating System

The Elo rating system, developed by Arpad Elo for chess ratings, is essentially a Bradley-Terry
model with online updates:
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INFO DEFINITION: ELO RATING SYSTEM

After player 𝑖 with rating 𝑅𝑖 plays player 𝑗 with rating 𝑅𝑗, the ratings are updated:

𝑅new
𝑖 = 𝑅𝑖 + 𝐾(𝑆𝑖 − 𝐸𝑖)

where:

– 𝑆𝑖 ∈ {0, 0.5, 1} is the actual outcome (loss, draw, win)
– 𝐸𝑖 = 𝜎((𝑅𝑗 − 𝑅𝑖)/400 ⋅ ln 10) is the expected outcome
– 𝐾 is a learning rate parameter

The Elo system is widely used in competitive games and has been adopted for AI evaluation in
settings like the Chatbot Arena, where humans compare model outputs pairwise.

2.3.3.3 Connection to AI Evaluation

The Chatbot Arena (LMSYS) uses Elo ratings to rank language models based on human pref-
erences. When a user prefers model A’s response over model B’s, this is treated as a “win”
for model A. The resulting ratings provide a preference-based complement to accuracy-based
benchmarks.

INFO CHATBOT ARENA AS THURSTONE’S COMPARATIVE JUDGMENT

The Chatbot Arena implements exactly the paradigm that L.L. Thurstone proposed in 1927: measuring
psychological attributes through pairwise comparisons. Thurstone developed this method to scale attitudes,
preferences, and other subjective quantities. A century later, the same mathematics underlies how we rank AI
systems.

2.3.4 Network Models: GGM and Ising

The models discussed so far assume a common cause structure: latent variables cause observed
responses. Network models propose an alternative: observed variables are directly connected to
each other, and correlations arise from these connections rather than common latent causes.

2.3.4.1 The Gaussian Graphical Model (GGM)

For continuous data, the Gaussian Graphical Model represents conditional independence rela-
tionships:
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INFO DEFINITION: GAUSSIAN GRAPHICAL MODEL

Variables 𝑋 = (𝑋1, … , 𝑋𝑀) follow a multivariate normal distribution with precision matrix Ω = Σ−1. The
partial correlation between 𝑋𝑗 and 𝑋𝑘 given all other variables is:

𝜌𝑗𝑘⋅rest = −
Ω𝑗𝑘

√Ω𝑗𝑗Ω𝑘𝑘

Two variables are conditionally independent if and only if Ω𝑗𝑘 = 0.

TheGGMcan be visualized as a networkwhere nodes are variables and edges represent non-zero
partial correlations.

2.3.4.2 The Ising Model

For binary data, the Ising model (borrowed from statistical physics) provides an analogous
framework:

INFO DEFINITION: ISING MODEL

𝑃(𝑌 = 𝑦) = 1
𝑍
exp(∑

𝑗
𝜏𝑗𝑦𝑗 + ∑

𝑗<𝑘
𝜔𝑗𝑘𝑦𝑗𝑦𝑘)

where:

– 𝜏𝑗 are threshold parameters (similar to item difficulties)
– 𝜔𝑗𝑘 are interaction parameters (edge weights)
– 𝑍 is a normalizing constant

In the Ising model, the correlation between two items arises from their direct connection 𝜔𝑗𝑘,
not from a common latent factor.

Figure 2.6
Graphical model for the Ising model. Unlike latent variable models, all nodes are observed and correlations arise
from direct pairwise connections 𝜔𝑗𝑘.
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2.3.4.3 Network vs. Latent Variable Models

The choice between network and latent variable models reflects different theories about what
causes observed correlations:

Aspect Latent Variable Model Network Model

Cause of
correlations

Common latent factor Direct connections

Removing an
item

No effect on other correlations May reduce correlations

Theoretical
commitment

Constructs exist and cause responses Constructs are summaries

Example “Intelligence” causes good performance Skills directly cause each other

For AI evaluation, the question is whether benchmark items are indicators of a common
capability (latent variable view) or whether they form a network of related but distinct skills
(network view). This distinction has implications for how we aggregate performance across
items.

INFO WHICH MODEL FOR AI?

The choice between latent variable and network models is not merely technical—it reflects different beliefs
about AI capabilities:

– Latent variable view: Models have underlying capabilities (reasoning, knowledge, language understanding)
that cause their benchmark performance.

– Network view: Benchmark items measure distinct skills that may reinforce each other but do not share a
common cause.

Both views may be partially correct. AIMS primarily adopts the latent variable view but acknowledges that
some benchmark items may not fit this framework.

2.3.5 Hierarchical Models

The models introduced so far treat all items as exchangeable—a single set of item parameters
enters the likelihood without any grouping structure. In practice, AI evaluations are nested:
items belong to benchmarks, benchmarks belong to suites or domains, and suites may be grouped
into broader capability areas. Hierarchical (multilevel) models make this nesting explicit in the
model specification, treating it as part of the data-generating process rather than an afterthought
of analysis.
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INFO DEFINITION: HIERARCHICAL IRT MODEL

Consider item 𝑖 nested within benchmark 𝑗. A hierarchical extension of the Rasch model specifies:

logit𝑃(𝑌𝑖𝑗 = 1 ∣ 𝜃, 𝑏𝑖𝑗) = 𝜃 − 𝑏𝑖𝑗

where item difficulties are drawn from a benchmark-level distribution:

𝑏𝑖𝑗 ∼ 𝒩(𝜇𝑗, 𝜎2
𝑗 )

The benchmark means 𝜇𝑗 may themselves follow a domain-level distribution 𝜇𝑗 ∼ 𝒩(𝜇0, 𝜏2), creating a
three-level hierarchy: items within benchmarks within domains. The same hierarchical extension applies to
2PL, 3PL, and factor models.

Figure 2.7
Plate diagram for the hierarchical IRT model. Item difficulties 𝑏𝑖𝑗 are drawn from benchmark-level distributions
parameterized by 𝜇𝑗 and 𝜎𝑗, which may themselves be drawn from domain-level hyperparameters 𝜇0 and 𝜏. Nested
plates reflect the hierarchical data structure.

The decision to include hierarchical structure is a modeling choice, analogous to the decision
between the 1PL and 2PL. It encodes the assumption that items within the same benchmark
share difficulty characteristics—their parameters are not independent draws from a single
global distribution, but cluster by benchmark. Ignoring this structure and treating all items
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as exchangeable conflates within-benchmark and between-benchmark variation, producing
estimates that may not generalize beyond the specific items observed (Luettgau et al. 2025).

INFO HIERARCHICAL STRUCTURE IN AI EVALUATION

Modern AI evaluations exhibit natural hierarchy at multiple levels:

– MMLU: 15,908 items → 57 subjects → 4 domains (humanities, social sciences, STEM, other)
– GAIA: agentic tasks → 3 difficulty levels → capability domain
– Coding benchmarks: problems → benchmarks (HumanEval, MBPP, DS-1000) → coding capability

Explicitly modeling these levels separates the sources of variation at each level. This enables principled general-
ization from the benchmarks actually tested to the broader construct they are intended to measure. Estimation
methods for hierarchical models, including partial pooling and Bayesian inference, are covered in Chapter 2.

2.4 The Rasch Model as “The Measurement Model”
Among the many probabilistic models for measurement, the Rasch model holds a special status.
Georg Rasch and his followers argue that it is not merely one measurement model among many—
it is the measurement model, the only model that satisfies the requirements for fundamental
measurement. This section examines this claim carefully.

2.4.1 Sufficiency of Sum Scores

The most remarkable property of the Rasch model is that the sum score is a sufficient statistic
for the ability parameter. This means that the total number of correct responses contains all
the information about a person’s ability; knowing which items were answered correctly adds
nothing.

INFO THEOREM: SUFFICIENCY IN THE RASCH MODEL

In the Rasch model, the total score 𝑆𝑖 = ∑𝑀
𝑗=1 𝑌𝑖𝑗 is a sufficient statistic for the ability parameter 𝜃𝑖. That is:

𝑃(𝑌𝑖|𝑆𝑖, 𝜃𝑖) = 𝑃(𝑌𝑖|𝑆𝑖)

The conditional distribution of the response pattern given the sum score does not depend on 𝜃.

INFO PROOF

The joint probability of response pattern 𝑌𝑖 = (𝑌𝑖1, … , 𝑌𝑖𝑀) is:
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𝑃(𝑌𝑖|𝜃𝑖, 𝛽) =
𝑀
∏
𝑗=1

exp(𝑌𝑖𝑗(𝜃𝑖 − 𝛽𝑗))
1 + exp(𝜃𝑖 − 𝛽𝑗)

Expanding:

=
exp(𝜃𝑖 ∑𝑗 𝑌𝑖𝑗) ⋅ exp(− ∑𝑗 𝑌𝑖𝑗𝛽𝑗)

∏𝑗(1 + exp(𝜃𝑖 − 𝛽𝑗))

=
exp(𝜃𝑖𝑆𝑖) ⋅ exp(− ∑𝑗 𝑌𝑖𝑗𝛽𝑗)

∏𝑗(1 + exp(𝜃𝑖 − 𝛽𝑗))

The likelihood factors as 𝐿(𝜃|𝑌 ) = 𝑔(𝑆, 𝜃) ⋅ ℎ(𝑌 , 𝛽), where 𝑔 depends on 𝜃 only through 𝑆.

By the factorization theorem, 𝑆 is sufficient for 𝜃.

To see that the conditional distribution 𝑃(𝑌𝑖|𝑆𝑖) does not depend on 𝜃:

𝑃(𝑌𝑖|𝑆𝑖, 𝜃𝑖) = 𝑃(𝑌𝑖|𝜃𝑖, 𝛽)
𝑃 (𝑆𝑖|𝜃𝑖, 𝛽)

Both numerator and denominator contain the factor exp(𝜃𝑖𝑆𝑖), which cancels when 𝑆𝑖 is fixed.

2.4.1.1 Why Sufficiency Matters

Sufficiency has profound implications:

1. Data reduction without information loss. We can summarize each person’s responses by
a single number (the sum score) without losing any information about their ability.

2. Justification for sum scores. The common practice of computing total scores is justified
only if the Rasch model holds. Under other models, sum scores discard information.

3. Conditional inference. We can estimate item parameters without knowing person param-
eters, and vice versa, by conditioning on sufficient statistics.

INFO SUFFICIENCY AND AI BENCHMARKS

When we compute a model’s accuracy on a benchmark, we are computing a sum score (proportion correct =
sum / number of items). This is appropriate if the Rasch model holds. But if items have different discriminations,
the sum score loses information—we should weight some items more than others.

Implication: Before trusting aggregate benchmark scores, we should test whether the Rasch model fits the data.
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2.4.2 Specific Objectivity

Georg Rasch’s central contribution was not the mathematical model itself (which had been
proposed earlier by others) but the philosophical framework of specific objectivity.

INFO DEFINITION: SPECIFIC OBJECTIVITY

A measurement procedure exhibits specific objectivity if comparisons between persons are independent of
which items are used:

𝑃(𝑌𝑖𝑗 = 1)
𝑃(𝑌𝑖𝑗 = 0)

/
𝑃(𝑌𝑘𝑗 = 1)
𝑃(𝑌𝑘𝑗 = 0)

= exp(𝜃𝑖)
exp(𝜃𝑘)

The item parameter 𝛽𝑗 cancels completely. Similarly, comparisons between items are independent of which
persons are used.

In the Rasch model, the odds ratio for two persons on the same item is:

𝑃(𝑌𝑖𝑗 = 1)/𝑃(𝑌𝑖𝑗 = 0)
𝑃(𝑌𝑘𝑗 = 1)/𝑃(𝑌𝑘𝑗 = 0)

=
exp(𝜃𝑖 − 𝛽𝑗)
exp(𝜃𝑘 − 𝛽𝑗)

= exp(𝜃𝑖 − 𝜃𝑘)

The item difficulty 𝛽𝑗 cancels! This means person comparisons are the same regardless of which
item we use.

Rasch identified two levels of objectivity:

1. Local objectivity: Comparisons are item-independent for a specific pair of persons.

2. General objectivity: The entire ability scale is sample-independent. Ability estimates
remain valid regardless of which items were administered.

2.4.3 Test-Free and Sample-Free Measurement

Specific objectivity enables what Rasch called test-free person measurement and sample-free
item calibration:

– Test-free person measurement: A person’s ability can be estimated from any subset of
calibrated items, and the estimate will be the same (within sampling error).

– Sample-free item calibration: An item’s difficulty can be estimated from any sample of
persons, and the estimate will be the same.

This is remarkable because it mirrors the properties of physical measurement:
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INFO THE ANALOGY TO PHYSICAL MEASUREMENT

Consider measuring temperature with different thermometers:

– A mercury thermometer in New York should give the same reading as an alcohol thermometer in London
for the same temperature.

– Calibrating a thermometer on hot water should yield parameters that work equally well for cold water.

The Rasch model claims the same properties for psychological measurement: calibrated tests yield the same
ability estimates regardless of which specific items are used.

2.4.3.1 Implications for AI Evaluation

If AI benchmarks satisfy Rasch model assumptions:

1. Benchmark subset comparisons are valid. We can compare a model tested on MMLU
subset A with a model tested on MMLU subset B, as long as both subsets are calibrated to
the same scale.

2. Newquestions can be calibrated on anymodels. Wecan add new questions to a benchmark
by testing them on a sample of models, then use them to evaluate future models.

3. Adaptive testing becomes possible. We can select questions dynamically based on amodel’s
performance, arriving at an accurate ability estimate with fewer questions.

4. Cross-benchmark comparisons may be possible. If different benchmarks measure the
same construct, we can equate their scales.

These properties are not guaranteed—they hold only if the Rasch model fits the data. Testing
model fit becomes essential.

2.4.4 The Rasch vs. General IRT Debate

The claim that Rasch is “the” measurement model is controversial. The debate centers on the
prescriptive vs. descriptive approaches to measurement.

2.4.4.1 The Prescriptive Approach (Rasch School)

The Rasch school argues:

1. Measurement requires specific objectivity. Without it, we cannot make person compar-
isons that are independent of the test used.

2. The model is a requirement, not a description. If data do not fit the Rasch model, the
items do not measure the same construct. We should discard misfitting items, not adopt
a more complex model.
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3. Discrimination variation is a problem, not a feature. Items with different discriminations
measure the construct with different precision. Mixing them produces a heterogeneous
test that does not measure a single thing.

4. Sufficiency is non-negotiable. The sum score must be sufficient for ability, or we are not
measuring anything meaningful.

2.4.4.2 The Descriptive Approach (General IRT)

The general IRT school responds:

1. Models should fit data. The purpose of a statistical model is to describe the data accurately.
If items have different discriminations, we should model this, not ignore it.

2. Perfect fit is unrealistic. Real data never perfectly fit any model. The Rasch school’s
insistence on exact fit is impractical.

3. Information is lost by forcingRasch. Discarding items that don’t fit Raschmeans discarding
information. Better to use all items and model their characteristics.

4. 2PL/3PL models are more realistic. Most tests have items with varying discrimination
and guessing. Pretending otherwise does not make it true.

INFO THE FUNDAMENTAL TENSION

Prescriptive view: The Rasch model defines what measurement IS. Items that don’t fit should be discarded
because they don’t measure the same thing.

Descriptive view: Use whatever model fits the data best. The 2PL/3PL models are more realistic for most
applications.

This is not merely a statistical disagreement—it reflects different philosophies of science. The Rasch school treats
measurement theory as providing requirements that data must satisfy. The IRT school treats models as tools that
should be chosen based on fit.

2.4.4.3 Implications for AI Evaluation

This debate has direct implications for AI benchmark design:

Question Rasch School Answer General IRT Answer

Should we allow
items with
different
discriminations?

No—they measure different
constructs

Yes—model the discrimination

What if data
don’t fit Rasch?

Remove misfitting items Use 2PL or 3PL
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Question Rasch School Answer General IRT Answer

Is sum score the
right metric?

Yes, if Rasch fits Only approximately

Can we compare
models across
benchmarks?

Yes, with Rasch Requires complex equating

AIMS takes a pragmatic position: we test whether data fit Rasch-like models, use the simpler
model when it fits adequately, and acknowledge when more complex models are needed.
The key insight is that the choice has consequences for what we can conclude from evaluation
results.

2.5 Historical Development
The probabilistic models we use today emerged from over a century of work across psychology,
education, economics, and statistics. Understanding this history illuminates why certain models
dominate and what problems they were designed to solve.

2.5.1 Thurstone’s Law of Comparative Judgment (1927)

The story begins with L.L. Thurstone at theUniversity of Chicago. In 1927, Thurstone proposed
a model for how people make pairwise comparisons: the Law of Comparative Judgment.

Thurstone’s insight was that subjective quantities (preferences, attitudes, perceived stimuli)
could be placed on a numerical scale by analyzing patterns of pairwise comparisons. If we ask
many people whether stimulus A is greater than stimulus B, and record the proportion who say
yes, we can infer the underlying scale values.

INFO THURSTONE’S MODEL (CASE V)

Each stimulus 𝑖 has a true scale value 𝜃𝑖. When comparing stimuli 𝑖 and 𝑗, each is perceived with Gaussian noise:

̃𝜃𝑖 ∼ 𝑁(𝜃𝑖, 𝜎2), ̃𝜃𝑗 ∼ 𝑁(𝜃𝑗, 𝜎2)

The probability that 𝑖 is judged greater than 𝑗 is:

𝑃(𝑖 ≻ 𝑗) = Φ (
𝜃𝑖 − 𝜃𝑗√

2𝜎
)

where Φ is the standard normal CDF.
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Thurstone’s method was revolutionary: it showed that subjective quantities could be measured
scientifically. The same mathematics now underlies how we rank AI systems from human
preferences.

2.5.2 Bradley-Terry and Luce (1952-1959)

In 1952, RalphBradley andMiltonTerry developed amodel for ranking frompaired comparisons
in the context of incomplete block designs. Their model:

𝑃(𝑖 ≻ 𝑗) = 𝜋𝑖
𝜋𝑖 + 𝜋𝑗

where 𝜋𝑖 > 0 are “worth” parameters. With 𝜃𝑖 = log𝜋𝑖, this becomes the familiar logistic
form.

In 1959, R. Duncan Luce provided an axiomatic foundation through hisChoice Axiom: the ratio
of choice probabilities for two alternatives should be independent of what other alternatives
are available. This axiom leads directly to the Bradley-Terry/logistic model.

2.5.3 Georg Rasch and the Danish School (1960)

Georg Rasch was a Danish mathematician who worked on problems in educational testing. In
1960, he published “Probabilistic Models for Some Intelligence and Attainment Tests,” which
introduced what we now call the Rasch model.

Rasch’s contribution was not the mathematical model itself—the same formula had appeared
earlier in other contexts. His contribution was the philosophical framework of specific objectivity:
the requirement that person and item parameters must be separable.

Rasch’s work was introduced to the United States by Benjamin Wright at the University of
Chicago, who heard Rasch lecture in 1960. Wright became the leading advocate for Rasch
measurement in the English-speaking world, founding the MESA (Measurement, Evaluation,
Statistical Analysis) program and the journal Rasch Measurement Transactions.

Other important figures in the Rasch tradition:

– Erling Andersen (Copenhagen): Developed the theory of conditional maximum likeli-
hood estimation for Rasch models.

– Gerhard Fischer (Vienna): Extended the Rasch model to the Linear Logistic Test Model
(LLTM) and developed software for estimation.

– David Andrich (Australia): Extended Rasch models to polytomous data (rating scales)
and developed the RUMM software.
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2.5.4 McFadden and Econometrics (1974)

In 1974, Daniel McFadden (who later won the Nobel Prize in Economics) developed the
random utility framework for discrete choice. His insight was that choices could be modeled as
utility maximization with random error:

A person chooses alternative 𝑖 over 𝑗 if 𝑈𝑖 + 𝜖𝑖 > 𝑈𝑗 + 𝜖𝑗, where 𝑈 is deterministic utility and 𝜖
is random. If the errors are i.i.d. Gumbel distributed, this yields the logistic choice model.

McFadden’s work connected preference models to economics and provided a theoretical justifi-
cation for the Bradley-Terry model: it arises from random utility maximization under specific
distributional assumptions.

2.5.5 Modern Developments

Network Psychometrics (2010s): Borsboom and colleagues proposed that psychological con-
structs might be better understood as networks of causally connected symptoms rather than
reflections of underlying latent variables. The Ising model and Gaussian Graphical Model
provide statistical tools for this perspective.

AI Evaluation (2020s): The application of psychometric methods to AI evaluation is recent.
Key developments include:

– Chatbot Arena using Elo ratings for LLM ranking (LMSYS, 2023)
– Application of IRT to benchmark analysis (Polo et al., 2024)
– Multidimensional factor models for AI capabilities (this textbook)

INFO KEY HISTORICAL PAPERS

Foundations:

– Thurstone, L.L. (1927). A law of comparative judgment. Psychological Review, 34, 273-286.
– Bradley, R.A. & Terry, M.E. (1952). Rank analysis of incomplete block designs. Biometrika, 39, 324-345.
– Luce, R.D. (1959). Individual Choice Behavior: A Theoretical Analysis. Wiley.
– Rasch, G. (1960). Probabilistic Models for Some Intelligence and Attainment Tests. Danish Institute for Educational

Research.
– McFadden, D. (1974). Conditional logit analysis of qualitative choice behavior. In Frontiers in Econometrics

(pp. 105-142). Academic Press.

Modern:

– Borsboom, D. (2005). Measuring the Mind: Conceptual Issues in Contemporary Psychometrics. Cambridge
University Press.

– Epskamp, S. et al. (2018). The Gaussian graphical model in cross-sectional and time-series data. Multivariate
Behavioral Research, 53, 453-480.
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2.6 From Psychology to AI: Transferring Measurement Science
The concepts developed in psychology and education transfer directly to AI evaluation. This
section makes the mapping explicit and highlights both the parallels and the differences.

2.6.1 The Translation Table

Psychology/Education AI Evaluation Symbol

Test taker (person, examinee) AI model 𝑖
Test item (question, problem) Benchmark question 𝑗
Ability, trait, latent construct Capability, skill 𝜃𝑖 or 𝑈𝑖
Item difficulty Question difficulty 𝛽𝑗 or 𝑉𝑗
Item discrimination Question informativeness 𝑎𝑗
Response (correct/incorrect) Model output

(correct/incorrect)
𝑌𝑖𝑗

Test (collection of items) Benchmark (collection of
questions)

-

Sum score (number correct) Accuracy 𝑆𝑖
Reliability Evaluation consistency -
Validity Measuring intended capability -
Test bias (DIF) Benchmark

contamination/bias
-

Adaptive testing (CAT) Efficient evaluation -

2.6.2 Key Parallels

Reliability. In educational testing, reliability refers to the consistency of scores across different
conditions:

– Test-retest reliability: Does the same person get the same score on repeated testing?
– Internal consistency: Do items within the test correlate with each other?
– Standard error of measurement: How precise is the score estimate?

For AI evaluation:

– Run-to-run consistency: Does the same model get the same score with different random
seeds?

– Item consistency: Do benchmark questions correlate with each other?
– Confidence intervals: How uncertain is the accuracy estimate?

Validity. In educational testing, validity concerns whether the test measures what it claims to
measure:

– Content validity: Do the items adequately sample the domain?
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– Criterion validity: Does the score predict relevant outcomes?
– Construct validity: Does the score behave as theory predicts?

For AI evaluation:

– Content validity: Does the benchmark cover the intended capability domain?
– Criterion validity: Does benchmark performance predict real-world usefulness?
– Construct validity: Do models that score high actually have the intended capability?

Fairness and Bias. In educational testing, differential item functioning (DIF) analysis checks
whether items are biased against certain groups:

– An item shows DIF if persons with equal ability but different group membership have
different probabilities of answering correctly.

For AI evaluation:

– Training data contamination: Did some models see the test questions during training?
– Architecture bias: Are some questions easier for certain model architectures?
– Prompt sensitivity: Do different prompt formats advantage different models?

2.6.3 Key Differences

While the mathematical framework transfers directly, some differences are worth noting:

1. Number of items. Psychological tests typically have tens to hundreds of items. AI
benchmarks may have thousands or hundreds of thousands. This affects estimation and
model fitting.

2. Deterministic responses. Human test-takers show stochastic variation—they may answer
the same question differently on different occasions. AI models (with temperature 0) are
often deterministic. This changes how we interpret probability models.

3. Construct definition. Psychological constructs like “intelligence” or “anxiety” have
extensive theoretical literature. AI capabilities like “reasoning” or “common sense” are
less well defined.

4. Speed of change. Human abilities change slowly. AI capabilities can change dramatically
with each model release. This affects the stability of calibrations.

5. Population structure. Human populations have known demographic structures. The
“population” of AI models is arbitrary—determined by which models researchers choose
to evaluate.
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2.6.4 Case Study: The Chatbot Arena

The Chatbot Arena (LMSYS) provides a concrete example of measurement concepts applied to
AI:

Setting: Users interact with two anonymous language models and vote for the one they prefer.
Models are ranked using Elo ratings computed from these pairwise comparisons.

Measurement framework: This is exactly Thurstone’s comparative judgment paradigm from
1927. The Elo rating system implements Bradley-Terry maximum likelihood estimation with
online updates.

Validity questions:

– What construct do the ratings measure? “Human preference” is vague. Preferences for
what—helpfulness, harmlessness, style, factual accuracy?

– Are ratings stable across different user populations?
– Do ratings predict performance on other benchmarks or real-world tasks?

Reliability questions:

– How many comparisons are needed for stable ratings?
– How sensitive are ratings to the specific prompts used?
– Do ratings fluctuate as new models enter the arena?

The Arena demonstrates both the power and limitations of measurement approaches. The Elo
ratings provide a principled summary of human preferences, but interpreting what they mean
requires the full apparatus of validity theory.

2.7 Summary and Preview
This chapter has introduced the measurement science framework that underlies the rest of
AIMS. The key ideas are:

2.7.1 Key Takeaways

1. Measurement requires more than scoring. Assigning numbers to models based on bench-
mark performance is scoring, not measuring. Measurement requires a theory connecting
scores to latent constructs.

2. Validity is about truth, not evidence. Following Borsboom, validity means that the
attribute exists and causally produces variation in scores. Evidence supports validity
claims but does not constitute validity.

3. The Rasch model has special properties. Sufficiency of sum scores and specific objectivity
make Rasch uniquely suitable for fundamental measurement. These properties justify
treating sum scores as measurements.
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4. Multiple models exist for different purposes. IRT models (1PL, 2PL, 3PL), factor models,
paired comparison models (Bradley-Terry, Elo), network models (GGM, Ising), and
hierarchical models serve different purposes. The choice of model—including whether
to represent nested evaluation structure—has implications for what we can conclude.

5. Psychology solved these problems decades ago. The tools developed in psychometrics—
reliability, validity, dimensionality analysis, adaptive testing—apply directly to AI evalua-
tion.

2.7.2 Preview of Following Chapters

The chapters that follow apply this framework to specific AI evaluation challenges:

– Chapter 2 (Learning): Covers parameter estimation for IRT and factor models, including
maximum likelihood, EM algorithms, Bayesian inference, and computerized adaptive
testing. Also introduces generalization experiments with various masking schemes.

– Chapter 3 (Design): Applies measurement principles to benchmark design, addressing
how to construct valid and reliable AI evaluations.

– Chapter 4 (Conclusion): Synthesizes the measurement science approach and discusses
future directions for AI evaluation.

The measurement concepts from this chapter recur throughout. When we ask whether a
benchmark is “valid,” we mean validity in Borsboom’s sense. When we justify using sum scores,
we appeal to sufficiency in the Rasch sense. When we analyze benchmark dimensionality, we
apply the factor models introduced in this chapter and trained using methods from Chapter
2.

2.8 Exercises
2.8.1 Theoretical Exercises

Exercise 1.1 (*): Explain in your own words why the sum score is a sufficient statistic in the
Rasch model but not in the 2PL model. What information is lost when we reduce responses to
sum scores under 2PL?

Exercise 1.2 (**): Prove that the Bradley-Terry model is equivalent to a Rasch model where
each “person” is a comparison between two items.

Hint: Consider a “person” as an ordered pair (𝑖, 𝑗) representing a comparison, and an “item” as a
single entity 𝑘 appearing in a comparison. Define appropriate ability and difficulty parameters.

Exercise 1.3 (**): Show that in the Rasch model, the odds ratio for persons 𝑖 and 𝑘 responding
correctly to item 𝑗 is:
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𝑃(𝑌𝑖𝑗 = 1)/𝑃(𝑌𝑖𝑗 = 0)
𝑃(𝑌𝑘𝑗 = 1)/𝑃(𝑌𝑘𝑗 = 0)

= exp(𝜃𝑖 − 𝜃𝑘)

independent of the item difficulty 𝛽𝑗. Explain why this property is called “specific objectiv-
ity.”

Exercise 1.4 (***): The Ising model and the Rasch model make different assumptions about
why responses correlate.

(a) Write down both models for binary data 𝑌 ∈ {0, 1}𝑁×𝑀.

(b) Describe the causal structure each model assumes.

(c) Under what conditions might each model be appropriate for AI evaluation?

(d) Propose an empirical test that could distinguish between them.

2.8.2 Computational Exercises

Exercise 1.5 (**): Implement Rasch model estimation using conditional maximum likelihood.

1 # Given: Response matrix Y (N models x M questions)
2 # Task: Estimate item difficulties using conditional MLE
3 #
4 # Steps:
5 # 1. Compute sum scores for each model
6 # 2. For each item, compute the conditional likelihood given sum scores
7 # 3. Optimize to find item difficulties
8 # 4. Compare estimated difficulties to empirical item means (proportion correct)
9 #

10 # Use scipy.optimize.minimize for optimization
11

12 import numpy as np
13 from scipy.optimize import minimize
14 from scipy.special import logsumexp
15

16 def estimate_rasch_conditional(Y):
17 """
18 Estimate Rasch model item difficulties using conditional MLE.
19

20 Parameters:
21 -----------
22 Y : np.ndarray, shape (N, M)
23 Binary response matrix
24

25 Returns:
26 --------
27 beta : np.ndarray, shape (M,)
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28 Estimated item difficulties (identified by setting sum(beta) = 0)
29 """
30 N, M = Y.shape
31 # YOUR CODE HERE
32 pass
33

34 # Test on simulated data
35 np.random.seed(42)
36 N, M = 100, 50
37 theta_true = np.random.normal(0, 1, N)
38 beta_true = np.random.normal(0, 1, M)
39 prob = 1 / (1 + np.exp(-(theta_true[:, None] - beta_true[None, :])))
40 Y = (np.random.random((N, M)) < prob).astype(int)
41

42 beta_hat = estimate_rasch_conditional(Y)
43 # Compare to true values (after centering)

Exercise 1.6 (**): Given pairwise preference data, estimate Bradley-Terry parameters.

1 # Given: Comparison data as list of (winner, loser) pairs
2 # Task: Estimate strength parameters via maximum likelihood
3 #
4 # The likelihood for comparison (i beats j) is:
5 # P(i > j) = exp(theta_i) / (exp(theta_i) + exp(theta_j))
6 # = sigmoid(theta_i - theta_j)
7

8 import numpy as np
9 from scipy.optimize import minimize

10

11 def estimate_bradley_terry(comparisons, n_items):
12 """
13 Estimate Bradley-Terry model parameters.
14

15 Parameters:
16 -----------
17 comparisons : list of (int, int)
18 List of (winner, loser) pairs
19 n_items : int
20 Number of items
21

22 Returns:
23 --------
24 theta : np.ndarray, shape (n_items,)
25 Estimated strength parameters (identified by setting theta[0] = 0)
26 """
27 # YOUR CODE HERE
28 pass
29
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30 # Test: Simulate comparisons and recover parameters

Exercise 1.7 (***): Test whether benchmark data fit the Raschmodel using Andersen’s likelihood
ratio test.

1 # Andersen's LR test:
2 # 1. Split persons into groups based on sum score (e.g., high vs low scorers)
3 # 2. Estimate item difficulties separately for each group
4 # 3. If Rasch holds, these estimates should be equal
5 # 4. Test statistic: 2 * (sum of group log-likelihoods - pooled log-likelihood)
6 # 5. Under H0, this is chi-squared with df = (n_groups - 1) * (n_items - 1)
7

8 def andersen_lr_test(Y, n_groups=2):
9 """

10 Perform Andersen's LR test for Rasch model fit.
11

12 Parameters:
13 -----------
14 Y : np.ndarray, shape (N, M)
15 Binary response matrix
16 n_groups : int
17 Number of groups to split persons into
18

19 Returns:
20 --------
21 statistic : float
22 LR test statistic
23 p_value : float
24 p-value from chi-squared distribution
25 """
26 # YOUR CODE HERE
27 pass

2.8.3 Discussion Questions

Discussion 1.1: Borsboom argues that validity is about truth, not evidence. How does this
change how we should think about AI benchmark validity? Can a benchmark be “valid enough”
for practical purposes even if we cannot prove the underlying construct exists?

Discussion 1.2: The Rasch school argues that items not fitting the Rasch model should be
discarded because they do not measure the same construct. What are the implications of this
view for AI benchmark design? Should we design benchmarks to fit Rasch, or should we use
more flexible models that accommodate heterogeneous items?

Discussion 1.3: Network psychometrics views symptoms as causally connected rather than
caused by a latent factor. Could AI capabilities be “network-like” rather than “factor-like”?
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What evidence would distinguish these views? How would it change how we interpret
benchmark scores?

2.9 Bibliographic Notes
2.9.1 Validity and Measurement Philosophy

The realist framework for validity originates with Borsboom’s influential paper “The Concept
of Validity” (Borsboom, Mellenbergh, & van Heerden, 2004) and his book Measuring the
Mind (2005). For a comprehensive treatment, see Frontiers of Test Validity Theory (Markus &
Borsboom, 2013). The classic reference on validity as evidence accumulation is Messick’s
chapter in Educational Measurement (1989).

2.9.2 Item Response Theory

The standard reference for IRT is Lord and Novick’s Statistical Theories of Mental Test Scores
(1968), though it predates modern computational methods. More accessible introductions
include Hambleton and Swaminathan’s Item Response Theory (1985) and de Ayala’s The Theory
and Practice of Item Response Theory (2009). The Handbook of Modern Item Response Theory (van
der Linden & Hambleton, 1997) provides comprehensive coverage.

2.9.3 Rasch Measurement

Rasch’s original book Probabilistic Models for Some Intelligence and Attainment Tests (1960) remains
influential. Wright and Stone’s Best Test Design (1979) provides practical guidance. Fischer
and Molenaar’s Rasch Models: Foundations, Recent Developments, and Applications (1995) covers
extensions and applications. For the philosophical foundations, see Rasch’s papers on objectivity
collected in the Rasch Measurement Transactions archive.

2.9.4 Historical Development

Thurstone’s seminal paper “A Law of Comparative Judgment” (1927) launched the quantitative
study of preferences. Bradley and Terry’s “Rank Analysis of Incomplete Block Designs” (1952)
and Luce’s Individual Choice Behavior (1959) established the axiomatic foundations. McFadden’s
“Conditional Logit Analysis” (1974) connected these to economic theory. For a history of
psychometrics, see Boring’s A History of Experimental Psychology (1950).

2.9.5 Network Psychometrics

The network approach is developed in Borsboom and Cramer’s “Network Analysis: An Inte-
grative Approach” (2013) and formalized in Epskamp et al.’s papers on the Gaussian graphical
model and Ising model (2018). The Network Psychometrics with R book (Epskamp et al., 2022)
provides practical guidance.
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2.9.6 AI Evaluation

The application of psychometric methods to AI is recent. For IRT applied to LLMs, see Polo et
al.’s “Efficient Multi-Prompt Evaluation” (2024). For factor models, see the methods developed
in this textbook. The Chatbot Arena is described in Zheng et al.’s “Judging LLM-as-a-Judge”
(2023).
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INFO INTENDED LEARNING OUTCOMES

By the end of this chapter, you will be able to:

1. Derive the log-likelihood function for the Rasch model and explain the role of person and item parameters.
2. Implement maximum likelihood estimation (MLE) for IRT models using gradient descent and L-BFGS

optimization.
3. Explain the identifiability problem in IRT and describe standard solutions (sum-to-zero, fixed anchor).
4. Distinguish between joint MLE, conditional MLE, and marginal MLE, and articulate when each is appropri-

ate.
5. Implement the Expectation-Maximization (EM) algorithm for Rasch model estimation and explain the

E-step and M-step.
6. Describe Bayesian inference for IRT models and specify appropriate priors for ability and item parameters.
7. Implement MAP estimation and MCMC sampling for IRT models.
8. Explain regularization in IRT as a Bayesian prior and apply cross-validation for hyperparameter selection.
9. Design a Computerized Adaptive Testing (CAT) procedure using Fisher information for item selection.

10. Apply MLE, Bayesian, and CAT methods to real AI benchmark data and compare their efficiency.

LIGHTBULB SUGGESTED LECTURE PLAN

This chapter can be covered in 3-4 lectures (75-90 minutes each):

Lecture 1: Foundations of Estimation

– Why learning matters for AI measurement (15 min)
– Likelihood and log-likelihood for Rasch model (20 min)
– Gradient derivation and interpretation (20 min)
– Hands-on: MLE with synthetic data (20 min)

Lecture 2: Advanced Estimation Methods

– Identifiability and conditional vs marginal MLE (20 min)
– EM algorithm for IRT (30 min)
– Hands-on: EM implementation (25 min)

Lecture 3: Bayesian Approaches

– Prior specification for IRT (15 min)
– MAP estimation (20 min)
– MCMC for IRT (30 min)
– Regularization as Bayesian prior (10 min)
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Lecture 4: Active Learning

– CAT framework and Fisher information (25 min)
– D-optimality and item selection (20 min)
– Stopping rules and efficiency (15 min)
– Hands-on: CAT simulation (15 min)

INFO NOTATION

Building on Chapter 1, we use the following additional notation:

Symbol Meaning Domain

ℓ(𝜃, 𝛽) Log-likelihood function ℝ
∇𝜃ℓ Gradient w.r.t. ability parameters ℝ𝑁

ℐ(𝜃) Fisher information matrix ℝ𝑁×𝑁

𝐼𝑗(𝜃) Fisher information for item 𝑗 ℝ+

𝜋(𝜃) Prior distribution over abilities -
𝜋(𝛽) Prior distribution over difficulties -

̂𝜃MLE Maximum likelihood estimate ℝ𝑁

̂𝜃MAP Maximum a posteriori estimate ℝ𝑁

𝜂 Learning rate ℝ+

LIGHTBULB VIDEO OVERVIEW

A visual tour of the key concepts in this chapter — from maximum likelihood estimation and the EM algorithm
to Bayesian inference and computerized adaptive testing.

../animations/ch2/chapter2_narrated.mp4

4.1 Why Learning Matters for AI Measurement
Chapter 1 introduced the measurement models—Rasch, 2PL, factor models—that describe how
latent abilities generate observed responses. But knowing the form of a model is not enough. To
actually use these models for AI evaluation, we must estimate their parameters from data.

Exclamation THE CENTRAL LEARNING PROBLEM IN AI MEASUREMENT

Given a response matrix 𝑌 ∈ {0, 1}𝑁×𝑀 where 𝑌𝑖𝑗 = 1 indicates model 𝑖 answered question 𝑗 correctly:

Find ̂𝜃, ̂𝛽 = argmax
𝜃,𝛽

𝑃(𝑌 ∣ 𝜃, 𝛽)

../animations/ch2/chapter2_narrated.mp4


4 LEARNING 50

This optimization problem underlies all psychometric estimation and forms the foundation for trustworthy AI
evaluation.

Parameter estimation serves several critical purposes in AI measurement:

1. Fair comparison: Calibrated item difficulties allow us to compare models tested on
different question subsets. If we know that question A is harder than question B, we can
appropriately weight their contributions to the final score.

2. Uncertainty quantification: Estimation procedures provide not just point estimates but
standard errors, telling us how confident we should be in our measurements.

3. Adaptive testing: Once we have calibrated item parameters, we can select the most
informative questions for each model, dramatically reducing evaluation costs.

4. Prediction: With learned parameters, we can predict how a model will perform on
questions it has never seen, enabling efficient evaluation of new benchmarks.

This chapter covers two complementary paradigms for learning these parameters:

– Passive learning: Given a fixed dataset, estimate all parameters simultaneously. This
includes maximum likelihood estimation (MLE), expectation-maximization (EM), and
Bayesian inference.

– Active learning: Sequentially select which questions to administer based on current
estimates, updating parameters after each response. Computerized Adaptive Testing
(CAT) is the primary example.

4.2 Maximum Likelihood Estimation
Maximum likelihood estimation is the foundation of parameter estimation in IRT. The principle
is simple: find the parameter values that make the observed data most probable.

4.2.1 The Likelihood Function

Recall from Chapter 1 that the Rasch model specifies the probability of a correct response as:

𝑃(𝑌𝑖𝑗 = 1 ∣ 𝜃𝑖, 𝛽𝑗) = 𝜎(𝜃𝑖 − 𝛽𝑗) = 1
1 + 𝑒−(𝜃𝑖−𝛽𝑗) (4.1)

where 𝜃𝑖 is the ability of model 𝑖 and 𝛽𝑗 is the difficulty of item 𝑗.

Under the assumption of local independence—that responses are conditionally independent given
the latent parameters—the likelihood of the entire response matrix is:
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𝐿(𝜃, 𝛽 ∣ 𝑌 ) =
𝑁

∏
𝑖=1

𝑀
∏
𝑗=1

𝑃(𝑌𝑖𝑗 ∣ 𝜃𝑖, 𝛽𝑗)𝑌𝑖𝑗 [1 − 𝑃(𝑌𝑖𝑗 ∣ 𝜃𝑖, 𝛽𝑗)]1−𝑌𝑖𝑗 (4.2)

Taking the logarithm (for computational stability and mathematical convenience):

ℓ(𝜃, 𝛽) =
𝑁

∑
𝑖=1

𝑀
∑
𝑗=1

[𝑌𝑖𝑗(𝜃𝑖 − 𝛽𝑗) − log(1 + 𝑒𝜃𝑖−𝛽𝑗)] (4.3)

This is the objective function we want to maximize.

4.2.2 Gradient Derivation

To optimize the log-likelihood, we need its gradients. Taking partial derivatives:

𝜕ℓ
𝜕𝜃𝑖

=
𝑀

∑
𝑗=1

[𝑌𝑖𝑗 − 𝜎(𝜃𝑖 − 𝛽𝑗)] (4.4)

𝜕ℓ
𝜕𝛽𝑗

=
𝑁

∑
𝑖=1

[𝜎(𝜃𝑖 − 𝛽𝑗) − 𝑌𝑖𝑗] (4.5)

INFO INTUITIVE INTERPRETATION OF THE GRADIENT

The gradient 𝜕ℓ
𝜕𝜃𝑖

= ∑𝑗[𝑌𝑖𝑗 − 𝑃𝑖𝑗] has a beautiful interpretation:

– 𝑌𝑖𝑗 is the observed response (0 or 1)
– 𝑃𝑖𝑗 = 𝜎(𝜃𝑖 − 𝛽𝑗) is the predicted probability

The gradient is simply the sum of residuals: observed minus predicted. If model 𝑖 performs better than expected
(more correct answers than predicted), the residuals are positive, and we increase 𝜃𝑖. If it performs worse than
expected, we decrease 𝜃𝑖. This is the essence of gradient ascent.

4.2.3 Implementation with Gradient Descent

Let us implement MLE via gradient descent on synthetic data. First, we generate a response
matrix from known parameters:

1 #| autorun: true
2 #| echo: false
3 import numpy as np
4 import matplotlib.pyplot as plt
5 plt.rcParams.update({
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6 "figure.figsize": (3.5, 3),
7 "figure.dpi": 150,
8 "figure.autolayout": True,
9 "font.size": 8,

10 "font.family": "serif",
11 "mathtext.fontset": "cm",
12 "axes.labelsize": 8,
13 "axes.titlesize": 9,
14 "xtick.labelsize": 7,
15 "ytick.labelsize": 7,
16 "legend.fontsize": 7,
17 "lines.linewidth": 1.0,
18 })

1 #| label: synthetic-data
2 #| autorun: true
3 #| fig-cap: "Synthetic response matrix generated from known Rasch model parameters."
4

5 import numpy as np
6 import matplotlib.pyplot as plt
7

8 def sigmoid(x):
9 """Numerically stable sigmoid function."""

10 return np.where(x >= 0,
11 1 / (1 + np.exp(-x)),
12 np.exp(x) / (1 + np.exp(x)))
13

14 # Set seed for reproducibility
15 np.random.seed(42)
16

17 # True parameters
18 N, M = 100, 50 # 100 models, 50 questions
19 theta_true = np.random.normal(0, 1, N) # True abilities
20 beta_true = np.random.normal(0, 1.5, M) # True difficulties
21

22 # Generate response matrix via Rasch model
23 prob_matrix = sigmoid(theta_true[:, None] - beta_true[None, :])
24 Y = (np.random.random((N, M)) < prob_matrix).astype(int)
25

26 print(f"Response matrix shape: {Y.shape}")
27 print(f"Overall accuracy: {Y.mean():.3f}")
28 print(f"Model accuracies range: [{Y.mean(axis=1).min():.3f},

{Y.mean(axis=1).max():.3f}]")↪

29 print(f"Item difficulties range: [{Y.mean(axis=0).min():.3f},
{Y.mean(axis=0).max():.3f}]")↪

30

31 # Visualize
32 fig, axes = plt.subplots(1, 2, figsize=(6, 2))
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33

34 # Raw response matrix
35 axes[0].imshow(Y, aspect='auto', cmap='Blues')
36 axes[0].set_xlabel('Questions')
37 axes[0].set_ylabel('Models')
38 axes[0].set_title('Raw Response Matrix')
39

40 # Sorted by ability and difficulty
41 row_order = np.argsort(Y.mean(axis=1))[::-1]
42 col_order = np.argsort(Y.mean(axis=0))[::-1]
43 Y_sorted = Y[row_order][:, col_order]
44 axes[1].imshow(Y_sorted, aspect='auto', cmap='Blues')
45 axes[1].set_xlabel('Questions (sorted by difficulty)')
46 axes[1].set_ylabel('Models (sorted by ability)')
47 axes[1].set_title('Sorted Response Matrix')
48

49 plt.tight_layout()
50 plt.show()

Now we implement MLE via gradient descent:

1 #| label: mle-gradient-descent
2 #| autorun: true
3 #| fig-cap: "Convergence of gradient descent for Rasch model MLE."
4

5 def rasch_log_likelihood(theta, beta, Y):
6 """Compute Rasch model log-likelihood."""
7 logits = theta[:, None] - beta[None, :]
8 ll = (Y * logits - np.log(1 + np.exp(np.clip(logits, -500, 500)))).sum()
9 return ll

10

11 def rasch_gradients(theta, beta, Y):
12 """Compute gradients for theta and beta."""
13 P = sigmoid(theta[:, None] - beta[None, :])
14 grad_theta = (Y - P).sum(axis=1)
15 grad_beta = (P - Y).sum(axis=0)
16 return grad_theta, grad_beta
17

18 # Initialize parameters at zero
19 theta_hat = np.zeros(N)
20 beta_hat = np.zeros(M)
21

22 # Gradient ascent
23 learning_rate = 0.01
24 n_iterations = 500
25 ll_history = []
26

27 for iteration in range(n_iterations):
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28 # Compute gradients
29 grad_theta, grad_beta = rasch_gradients(theta_hat, beta_hat, Y)
30

31 # Update parameters
32 theta_hat = theta_hat + learning_rate * grad_theta
33 beta_hat = beta_hat + learning_rate * grad_beta
34

35 # Re-center for identification (sum-to-zero constraint)
36 theta_hat = theta_hat - theta_hat.mean()
37 beta_hat = beta_hat - beta_hat.mean()
38

39 # Track log-likelihood
40 ll = rasch_log_likelihood(theta_hat, beta_hat, Y)
41 ll_history.append(ll)
42

43 # Plot convergence
44 fig, axes = plt.subplots(1, 3, figsize=(6, 2))
45

46 # Convergence curve
47 axes[0].plot(ll_history)
48 axes[0].set_xlabel('Iteration')
49 axes[0].set_ylabel('Log-likelihood')
50 axes[0].set_title('Gradient Ascent Convergence')
51 axes[0].grid(True, alpha=0.3)
52

53 # Compare ability estimates to true values
54 theta_true_centered = theta_true - theta_true.mean()
55 axes[1].scatter(theta_true_centered, theta_hat, alpha=0.6)
56 axes[1].plot([-3, 3], [-3, 3], 'k--', alpha=0.5, label='y=x')
57 axes[1].set_xlabel('True ability (centered)')
58 axes[1].set_ylabel('Estimated ability')
59 axes[1].set_title('Recovery of Abilities')
60 axes[1].legend()
61 axes[1].grid(True, alpha=0.3)
62

63 # Compare difficulty estimates to true values
64 beta_true_centered = beta_true - beta_true.mean()
65 axes[2].scatter(beta_true_centered, beta_hat, alpha=0.6, color='orange')
66 axes[2].plot([-4, 4], [-4, 4], 'k--', alpha=0.5, label='y=x')
67 axes[2].set_xlabel('True difficulty (centered)')
68 axes[2].set_ylabel('Estimated difficulty')
69 axes[2].set_title('Recovery of Difficulties')
70 axes[2].legend()
71 axes[2].grid(True, alpha=0.3)
72

73 plt.tight_layout()
74 plt.show()
75

76 # Correlation with true values
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77 corr_theta = np.corrcoef(theta_true_centered, theta_hat)[0, 1]
78 corr_beta = np.corrcoef(beta_true_centered, beta_hat)[0, 1]
79 print(f"Correlation with true abilities: {corr_theta:.4f}")
80 print(f"Correlation with true difficulties: {corr_beta:.4f}")

4.2.4 The Identifiability Problem

Exclamation-Triangle THE IDENTIFIABILITY PROBLEM

The Rasch model has a fundamental identifiability issue: if we add a constant 𝑐 to all abilities and all difficulties,
the likelihood is unchanged:

𝑃(𝑌𝑖𝑗 = 1 ∣ 𝜃𝑖 + 𝑐, 𝛽𝑗 + 𝑐) = 𝜎((𝜃𝑖 + 𝑐) − (𝛽𝑗 + 𝑐)) = 𝜎(𝜃𝑖 − 𝛽𝑗)

The parameters are only identified up to an additive constant. This means infinitely many parameter values
produce the same likelihood.

Common Solutions:

1. Sum-to-zero constraint: Set ∑𝑖 𝜃𝑖 = 0 or ∑𝑗 𝛽𝑗 = 0
2. Fixed anchor: Set one parameter (e.g., 𝛽1 = 0) as reference
3. Prior constraint: Use Bayesian priors centered at zero

For AI benchmarks, we typically use sum-to-zero: a model with 𝜃 = 0 has “average” ability relative to the
calibration sample.

Without addressing identifiability, gradient descent may drift indefinitely. The re-centering
step in our implementation ensures parameters remain anchored.

4.2.5 L-BFGS Optimization

While gradient descent is intuitive, quasi-Newton methods like L-BFGS converge much faster
by approximating second-order information:

1 #| label: lbfgs-optimization
2 #| autorun: true
3 #| fig-cap: "L-BFGS achieves faster convergence than gradient descent."
4

5 from scipy.optimize import minimize
6

7 def negative_log_likelihood(params, Y):
8 """Negative log-likelihood (for minimization)."""
9 N, M = Y.shape

10 theta = params[:N]
11 beta = params[N:]
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12

13 logits = theta[:, None] - beta[None, :]
14 nll = -(Y * logits - np.log(1 + np.exp(np.clip(logits, -500, 500)))).sum()
15 return nll
16

17 def gradient(params, Y):
18 """Gradient of negative log-likelihood."""
19 N, M = Y.shape
20 theta = params[:N]
21 beta = params[N:]
22

23 P = sigmoid(theta[:, None] - beta[None, :])
24 grad_theta = -(Y - P).sum(axis=1)
25 grad_beta = -(P - Y).sum(axis=0)
26

27 return np.concatenate([grad_theta, grad_beta])
28

29 # Initial parameters
30 params0 = np.zeros(N + M)
31

32 # L-BFGS optimization
33 result = minimize(
34 negative_log_likelihood,
35 params0,
36 args=(Y,),
37 jac=gradient,
38 method='L-BFGS-B',
39 options={'maxiter': 200, 'disp': False}
40 )
41

42 theta_lbfgs = result.x[:N]
43 beta_lbfgs = result.x[N:]
44

45 # Center for comparison
46 theta_lbfgs = theta_lbfgs - theta_lbfgs.mean()
47 beta_lbfgs = beta_lbfgs - beta_lbfgs.mean()
48

49 print(f"L-BFGS converged: {result.success}")
50 print(f"Final log-likelihood: {-result.fun:.2f}")
51 print(f"Iterations: {result.nit}")
52

53 # Compare to gradient descent
54 print(f"\nCorrelation with GD estimates:")
55 print(f" Abilities: {np.corrcoef(theta_hat, theta_lbfgs)[0,1]:.6f}")
56 print(f" Difficulties: {np.corrcoef(beta_hat, beta_lbfgs)[0,1]:.6f}")



4 LEARNING 57

4.3 Joint, Conditional, and Marginal MLE
The MLE approach we have discussed so far is called joint maximum likelihood estimation (JMLE).
It treats both person parameters 𝜃 and item parameters 𝛽 as fixed unknowns to be estimated.
However, JMLE has theoretical limitations that motivate alternative approaches.

4.3.1 Joint MLE (JMLE)

JMLE simultaneously estimates all parameters by maximizing Equation 4.3. While intuitive,
JMLE suffers from the incidental parameter problem: as the number of items 𝑀 remains fixed and
the number of persons 𝑁 grows, the item parameter estimates ̂𝛽 are inconsistent—they do not
converge to the true values.

This happens because each person parameter 𝜃𝑖 is estimated from only 𝑀 observations (their
responses to 𝑀 items), and these “incidental” person parameters introduce bias into the item
estimates.

For AI benchmarks with many items (typically 𝑀 > 100), this bias is small in practice. But for
smaller tests, JMLE can be problematic.

4.3.2 Conditional MLE (CMLE)

Georg Rasch discovered an elegant solution to the incidental parameter problem. For the Rasch
model specifically, the sum score 𝑆𝑖 = ∑𝑗 𝑌𝑖𝑗 is a sufficient statistic for 𝜃𝑖. This means all
information about 𝜃𝑖 in the data 𝑌𝑖 is captured by 𝑆𝑖.

By conditioning on the sufficient statistics, we can eliminate the person parameters entirely:

𝑃(𝑌𝑖 ∣ 𝑆𝑖, 𝛽) =
exp(− ∑𝑗 𝑌𝑖𝑗𝛽𝑗)

𝛾𝑆𝑖
(𝛽)

(4.6)

where 𝛾𝑟(𝛽) = ∑𝐴∶|𝐴|=𝑟 exp(− ∑𝑗∈𝐴 𝛽𝑗) is the elementary symmetric function of order 𝑟,
summing over all subsets 𝐴 of items of size 𝑟.

The conditional likelihood depends only on 𝛽, so we can estimate item parameters without any
person parameters. This produces consistent estimates of 𝛽 regardless of how 𝑁 grows.

INFO RASCH’S INSIGHT

The sufficiency of sum scores is unique to the Rasch model. For the 2PL or 3PL models, sum scores are not
sufficient, and CMLE cannot be applied. This mathematical property is one reason the Rasch model holds
special status in measurement theory.
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4.3.3 Marginal MLE (MMLE)

An alternative approach is to treat person parameters as random variables from a population
distribution:

𝜃𝑖 ∼ 𝒩(𝜇𝜃, 𝜎2
𝜃)

The marginal likelihood integrates out the person parameters:

𝐿(𝛽) =
𝑁

∏
𝑖=1

∫ 𝑃(𝑌𝑖 ∣ 𝜃, 𝛽) 𝑝(𝜃) 𝑑𝜃 (4.7)

This approach:

– Treats item parameters as fixed and person parameters as random
– Produces consistent estimates of 𝛽 as 𝑁 → ∞
– Naturally extends to more complex IRT models (2PL, 3PL)
– Forms the basis for the EM algorithm (next section)

INFO COMPARISON OF MLE APPROACHES

Method Person Parameters Item Parameters Consistency Applicability

JMLE Estimated directly Estimated directly Inconsistent for
fixed M

Any IRT model

CMLE Conditioned out Consistent Consistent Rasch only
MMLE Integrated out Consistent Consistent Any IRT model

For AI benchmarks with many questions (𝑀 > 100), JMLE works well in practice. For smaller tests or when
statistical properties are important, CMLE or MMLE is preferred.

4.4 The EM Algorithm
The Expectation-Maximization (EM) algorithm is a general method for maximum likelihood
estimation with latent variables. In IRT, the latent variables are the person abilities 𝜃.

4.4.1 The EM Framework

The EM algorithm iterates between two steps:

E-step (Expectation): Compute the expected value of the complete-data log-likelihood, given
the observed data and current parameter estimates:
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𝑄(𝛽 ∣ 𝛽(𝑡)) = 𝔼𝜃∣𝑌 ,𝛽(𝑡) [log𝑃(𝑌 , 𝜃 ∣ 𝛽)]

M-step (Maximization): Find the parameter values that maximize the expected log-
likelihood:

𝛽(𝑡+1) = argmax
𝛽

𝑄(𝛽 ∣ 𝛽(𝑡))

The EM algorithm guarantees that the marginal likelihood increases (or stays the same) at each
iteration, converging to a local maximum.

4.4.2 EM for the Rasch Model

For the Rasch model with a standard normal prior on abilities, the EM algorithm takes a specific
form:

E-step: For each person 𝑖, compute the posterior distribution of 𝜃𝑖 given their responses 𝑌𝑖 and
current item parameters 𝛽(𝑡):

𝑝(𝜃𝑖 ∣ 𝑌𝑖, 𝛽(𝑡)) ∝ 𝑝(𝑌𝑖 ∣ 𝜃𝑖, 𝛽(𝑡)) ⋅ 𝑝(𝜃𝑖)

This posterior is not available in closed form, so we use numerical integration (Gauss-Hermite
quadrature).

M-step: Update each item parameter by solving:

𝑁
∑
𝑖=1

𝔼𝜃𝑖
[𝜎(𝜃𝑖 − 𝛽𝑗)] =

𝑁
∑
𝑖=1

𝑌𝑖𝑗

The left side is the expected number of correct responses to item 𝑗; the right side is the observed
number. We equate these.

1 #| label: em-algorithm
2 #| autorun: true
3 #| fig-cap: "EM algorithm convergence for Rasch model estimation."
4

5 from numpy.polynomial.hermite import hermgauss
6

7 def em_rasch(Y, n_iterations=50, n_quadrature=21, verbose=True):
8 """
9 EM algorithm for Rasch model using Gauss-Hermite quadrature.

10

11 Parameters



4 LEARNING 60

12 ----------
13 Y : ndarray (N, M)
14 Binary response matrix
15 n_iterations : int
16 Number of EM iterations
17 n_quadrature : int
18 Number of quadrature points
19 verbose : bool
20 Print progress
21

22 Returns
23 -------
24 theta_hat : ndarray (N,)
25 Estimated abilities (posterior means)
26 beta_hat : ndarray (M,)
27 Estimated difficulties
28 ll_history : list
29 Marginal log-likelihood at each iteration
30 """
31 N, M = Y.shape
32

33 # Initialize item difficulties
34 beta = np.zeros(M)
35

36 # Gauss-Hermite quadrature points and weights
37 # These approximate the integral over theta ~ N(0, 1)
38 nodes, weights = hermgauss(n_quadrature)
39 nodes = nodes * np.sqrt(2) # Scale for standard normal
40 weights = weights / np.sqrt(np.pi) # Normalize
41

42 ll_history = []
43

44 for iteration in range(n_iterations):
45 # E-step: Compute posterior distributions over theta
46 # P(theta | Y_i, beta) for each person at each quadrature point
47

48 # Compute log-likelihood at each quadrature point for each person
49 # log P(Y_i | theta_q, beta) for all i, q
50 log_L = np.zeros((N, n_quadrature))
51 for q, theta_q in enumerate(nodes):
52 logits = theta_q - beta # (M,)
53 # log P(Y_i | theta_q) = sum_j [Y_ij * logit_j - log(1 + exp(logit_j))]
54 log_probs = Y * logits - np.log(1 + np.exp(np.clip(logits, -500, 500)))
55 log_L[:, q] = log_probs.sum(axis=1)
56

57 # Compute posterior weights: P(theta_q | Y_i, beta) � P(Y_i | theta_q) *
P(theta_q)↪

58 # The weights already incorporate P(theta_q) from Gauss-Hermite
59 log_posterior = log_L + np.log(weights + 1e-300)
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60

61 # Normalize to get posterior probabilities
62 log_posterior_max = log_posterior.max(axis=1, keepdims=True)
63 posterior = np.exp(log_posterior - log_posterior_max)
64 posterior = posterior / posterior.sum(axis=1, keepdims=True)
65

66 # Expected ability for each person (posterior mean)
67 E_theta = (posterior * nodes).sum(axis=1)
68

69 # M-step: Update beta
70 # For each item j, solve: sum_i E[P(Y_ij=1 | theta_i)] = sum_i Y_ij
71 for j in range(M):
72 # Expected probability at each quadrature point
73 for _ in range(5): # Newton-Raphson iterations
74 E_prob_j = np.zeros(N)
75 E_deriv_j = np.zeros(N)
76 for q, theta_q in enumerate(nodes):
77 p_q = sigmoid(theta_q - beta[j])
78 E_prob_j += posterior[:, q] * p_q
79 E_deriv_j += posterior[:, q] * p_q * (1 - p_q)
80

81 # Newton-Raphson update
82 residual = E_prob_j.sum() - Y[:, j].sum()
83 hessian = -E_deriv_j.sum()
84 if abs(hessian) > 1e-10:
85 beta[j] = beta[j] - residual / hessian
86

87 # Center beta for identification
88 beta = beta - beta.mean()
89

90 # Compute marginal log-likelihood for monitoring
91 ll = (log_posterior_max.flatten() +
92 np.log(np.exp(log_L - log_posterior_max) @ weights + 1e-300)).sum()
93 ll_history.append(ll)
94

95 if verbose and (iteration + 1) % 10 == 0:
96 print(f"Iteration {iteration + 1}: LL = {ll:.2f}")
97

98 # Final E-step to get ability estimates
99 log_L = np.zeros((N, n_quadrature))

100 for q, theta_q in enumerate(nodes):
101 logits = theta_q - beta
102 log_probs = Y * logits - np.log(1 + np.exp(np.clip(logits, -500, 500)))
103 log_L[:, q] = log_probs.sum(axis=1)
104

105 log_posterior = log_L + np.log(weights + 1e-300)
106 log_posterior_max = log_posterior.max(axis=1, keepdims=True)
107 posterior = np.exp(log_posterior - log_posterior_max)
108 posterior = posterior / posterior.sum(axis=1, keepdims=True)
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109 theta_hat = (posterior * nodes).sum(axis=1)
110

111 return theta_hat, beta, ll_history
112

113 # Run EM algorithm
114 theta_em, beta_em, ll_em = em_rasch(Y, n_iterations=50)
115

116 # Plot results
117 fig, axes = plt.subplots(1, 3, figsize=(6, 2))
118

119 # Convergence
120 axes[0].plot(ll_em)
121 axes[0].set_xlabel('Iteration')
122 axes[0].set_ylabel('Marginal Log-likelihood')
123 axes[0].set_title('EM Algorithm Convergence')
124 axes[0].grid(True, alpha=0.3)
125

126 # Ability recovery
127 axes[1].scatter(theta_true_centered, theta_em, alpha=0.6)
128 axes[1].plot([-3, 3], [-3, 3], 'k--', alpha=0.5)
129 axes[1].set_xlabel('True ability (centered)')
130 axes[1].set_ylabel('EM estimate')
131 axes[1].set_title('Ability Recovery (EM)')
132 axes[1].grid(True, alpha=0.3)
133

134 # Difficulty recovery
135 axes[2].scatter(beta_true_centered, beta_em, alpha=0.6, color='orange')
136 axes[2].plot([-4, 4], [-4, 4], 'k--', alpha=0.5)
137 axes[2].set_xlabel('True difficulty (centered)')
138 axes[2].set_ylabel('EM estimate')
139 axes[2].set_title('Difficulty Recovery (EM)')
140 axes[2].grid(True, alpha=0.3)
141

142 plt.tight_layout()
143 plt.show()
144

145 print(f"Correlation (abilities): {np.corrcoef(theta_true_centered,
theta_em)[0,1]:.4f}")↪

146 print(f"Correlation (difficulties): {np.corrcoef(beta_true_centered,
beta_em)[0,1]:.4f}")↪

4.4.3 Multidimensional Extension: The Logistic Factor Model

The methods above focused on the Rasch model, which assumes a single latent dimension. For
AI benchmarks that measure multiple capabilities, we extend to the Logistic Factor Model:

𝑃(𝑌𝑖𝑗 = 1 ∣ 𝑈𝑖, 𝑉𝑗, 𝑍𝑗) = 𝜎(𝑈⊤
𝑖 𝑉𝑗 + 𝑍𝑗)
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where:

– 𝑈𝑖 ∈ ℝ𝐾 is the 𝐾-dimensional latent ability vector for model 𝑖
– 𝑉𝑗 ∈ ℝ𝐾 is the factor loading vector for item 𝑗
– 𝑍𝑗 ∈ ℝ is the item intercept (capturing overall difficulty)

When 𝐾 = 1 and 𝑉𝑗 = 1 for all 𝑗, this reduces to the Rasch model.

4.4.3.1 Implementation

1 import torch
2 import torch.nn as nn
3 from torch.optim import LBFGS
4 import torch.nn.functional as F
5

6 class LogisticFM(nn.Module):
7 """Logistic Factor Model for binary response data."""
8 def __init__(self, N, M, K):
9 super().__init__()

10 self.U = nn.Parameter(torch.randn(N, K)) # Model abilities
11 self.V = nn.Parameter(torch.randn(M, K)) # Item loadings
12 self.Z = nn.Parameter(torch.randn(M, 1)) # Item intercepts
13

14 def forward(self):
15 return torch.sigmoid(self.U @ self.V.T + self.Z.T)

INFO INTERPRETATION

– 𝑈𝑖: latent ability vector of model 𝑖 (position in 𝐾-dimensional capability space)
– 𝑉𝑗: latent property vector of item 𝑗 (which capabilities the item measures)
– 𝑍𝑗: overall item difficulty (independent of capability dimensions)
– 𝜎: sigmoid function ensuring probabilities in [0, 1]

4.4.3.2 Training with LBFGS

We train the model by minimizing binary cross-entropy loss:

1 # Training setup
2 N, M = Y.shape
3 K = 2 # Number of latent dimensions
4 model = LogisticFM(N, M, K)
5

6 opt = LBFGS(
7 model.parameters(),
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8 lr=0.1,
9 max_iter=20,

10 history_size=10,
11 line_search_fn="strong_wolfe"
12 )
13

14 def closure():
15 opt.zero_grad()
16 probs = model()
17 loss = F.binary_cross_entropy(probs[train_mask], Y[train_mask].float())
18 loss.backward()
19 return loss
20

21 # Training loop
22 for iteration in range(20):
23 loss = opt.step(closure)

The model learns to decompose the response matrix into latent factors that capture the under-
lying structure of model capabilities and item characteristics.

4.5 Bayesian Inference
Bayesian inference provides an alternative to maximum likelihood that naturally incorporates
prior information and quantifies uncertainty. Instead of finding a single point estimate, we
characterize the entire posterior distribution over parameters.

4.5.1 Prior Specification

The first step in Bayesian inference is specifying prior distributions that encode our beliefs
before seeing the data:

INFO STANDARD PRIORS FOR IRT

For abilities (persons/models):

𝜃𝑖 ∼ 𝒩(0, 𝜎2
𝜃), 𝜎𝜃 = 1 (standard choice)

For difficulties (items/questions):

𝛽𝑗 ∼ 𝒩(0, 𝜎2
𝛽), 𝜎𝛽 = 1-2 (depending on expected range)

For discrimination (2PL model):

𝑎𝑗 ∼ LogNormal(0, 0.5) or 𝑎𝑗 ∼ Gamma(2, 0.5)
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These priors are weakly informative: they regularize estimates without dominating the data. They encode the
belief that most abilities and difficulties are within a few units of zero, which is appropriate when the scale is
defined by convention.

4.5.2 Posterior Computation

Bayes’ theorem gives us the posterior distribution:

𝑝(𝜃, 𝛽 ∣ 𝑌 ) ∝ 𝑝(𝑌 ∣ 𝜃, 𝛽) ⋅ 𝑝(𝜃) ⋅ 𝑝(𝛽) (4.8)

The posterior combines the likelihood (data) with the priors (beliefs). Unfortunately, this
posterior is not available in closed form—we need computational methods.

4.5.3 MAP Estimation

The simplest Bayesian approach is maximum a posteriori (MAP) estimation, which finds the mode
of the posterior:

̂𝜃MAP, ̂𝛽MAP = argmax
𝜃,𝛽

[ℓ(𝜃, 𝛽 ∣ 𝑌 ) + log 𝑝(𝜃) + log 𝑝(𝛽)] (4.9)

With Gaussian priors, this is equivalent to L2-regularized MLE:

̂𝜃MAP, ̂𝛽MAP = argmax
𝜃,𝛽

[ℓ(𝜃, 𝛽) − 1
2𝜎2

𝜃
∑

𝑖
𝜃2

𝑖 − 1
2𝜎2

𝛽
∑

𝑗
𝛽2

𝑗 ]

1 #| label: map-estimation
2 #| autorun: true
3 #| fig-cap: "Comparison of MLE and MAP estimates showing Bayesian shrinkage."
4

5 def map_objective(params, Y, sigma_theta=1.0, sigma_beta=1.5):
6 """Negative log-posterior (to minimize)."""
7 N, M = Y.shape
8 theta = params[:N]
9 beta = params[N:]

10

11 # Log-likelihood
12 logits = theta[:, None] - beta[None, :]
13 ll = (Y * logits - np.log(1 + np.exp(np.clip(logits, -500, 500)))).sum()
14

15 # Log-prior (Gaussian)
16 log_prior_theta = -0.5 * (theta**2 / sigma_theta**2).sum()
17 log_prior_beta = -0.5 * (beta**2 / sigma_beta**2).sum()
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18

19 return -(ll + log_prior_theta + log_prior_beta)
20

21 def map_gradient(params, Y, sigma_theta=1.0, sigma_beta=1.5):
22 """Gradient of negative log-posterior."""
23 N, M = Y.shape
24 theta = params[:N]
25 beta = params[N:]
26

27 P = sigmoid(theta[:, None] - beta[None, :])
28 grad_theta = -(Y - P).sum(axis=1) + theta / sigma_theta**2
29 grad_beta = -(P - Y).sum(axis=0) + beta / sigma_beta**2
30

31 return np.concatenate([grad_theta, grad_beta])
32

33 # MAP estimation
34 params0 = np.zeros(N + M)
35 result_map = minimize(
36 map_objective, params0, args=(Y,),
37 jac=map_gradient,
38 method='L-BFGS-B',
39 options={'maxiter': 200}
40 )
41

42 theta_map = result_map.x[:N]
43 beta_map = result_map.x[N:]
44

45 # Center for comparison
46 theta_map = theta_map - theta_map.mean()
47 beta_map = beta_map - beta_map.mean()
48

49 # Compare MLE vs MAP
50 fig, axes = plt.subplots(1, 2, figsize=(6, 2))
51

52 # Abilities
53 axes[0].scatter(theta_true_centered, theta_lbfgs, alpha=0.5, label='MLE', s=30)
54 axes[0].scatter(theta_true_centered, theta_map, alpha=0.5, label='MAP', s=30)
55 axes[0].plot([-3, 3], [-3, 3], 'k--', alpha=0.5)
56 axes[0].set_xlabel('True ability')
57 axes[0].set_ylabel('Estimated ability')
58 axes[0].set_title('Ability Estimates: MLE vs MAP')
59 axes[0].legend()
60 axes[0].grid(True, alpha=0.3)
61

62 # Difficulties
63 axes[1].scatter(beta_true_centered, beta_lbfgs, alpha=0.5, label='MLE', s=30)
64 axes[1].scatter(beta_true_centered, beta_map, alpha=0.5, label='MAP', s=30)
65 axes[1].plot([-4, 4], [-4, 4], 'k--', alpha=0.5)
66 axes[1].set_xlabel('True difficulty')
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67 axes[1].set_ylabel('Estimated difficulty')
68 axes[1].set_title('Difficulty Estimates: MLE vs MAP')
69 axes[1].legend()
70 axes[1].grid(True, alpha=0.3)
71

72 plt.tight_layout()
73 plt.show()
74

75 # Shrinkage demonstration
76 print("Shrinkage effect (standard deviations):")
77 print(f" MLE abilities: {theta_lbfgs.std():.3f}, MAP abilities:

{theta_map.std():.3f}")↪

78 print(f" MLE difficulties: {beta_lbfgs.std():.3f}, MAP difficulties:
{beta_map.std():.3f}")↪

LIGHTBULB BAYESIAN SHRINKAGE

Notice that MAP estimates have smaller variance than MLE estimates. This is shrinkage toward the prior mean
(zero).

For extreme scores—models that answer all questions correctly or incorrectly—MLE gives infinite or very large
estimates. MAP regularizes these to finite, sensible values. This is crucial for AI benchmarks where some models
may achieve near-perfect scores on easy subsets.

The amount of shrinkage is controlled by the prior variance: smaller 𝜎2 means stronger shrinkage toward zero.

4.5.4 MCMC Sampling

To characterize the full posterior distribution (not just its mode), we use Markov Chain
Monte Carlo (MCMC) sampling. The Metropolis-Hastings algorithm is a simple but effective
approach:

1 #| label: mcmc-sampling
2 #| autorun: true
3 #| fig-cap: "MCMC trace plots and posterior distributions for selected parameters."
4

5 def log_posterior(theta, beta, Y, sigma_theta=1.0, sigma_beta=1.5):
6 """Compute log-posterior (up to normalizing constant)."""
7 logits = theta[:, None] - beta[None, :]
8 ll = (Y * logits - np.log(1 + np.exp(np.clip(logits, -500, 500)))).sum()
9 log_prior = -0.5 * ((theta**2).sum() / sigma_theta**2 +

10 (beta**2).sum() / sigma_beta**2)
11 return ll + log_prior
12

13 def metropolis_hastings_rasch(Y, n_samples=2000, n_warmup=500,
14 proposal_sd=0.05, thin=2, verbose=True):
15 """
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16 Metropolis-Hastings sampler for Rasch model.
17

18 Uses a random-walk proposal for all parameters jointly.
19 """
20 N, M = Y.shape
21

22 # Initialize at MAP estimate
23 theta = theta_map.copy()
24 beta = beta_map.copy()
25

26 # Storage for samples
27 n_stored = n_samples // thin
28 theta_samples = np.zeros((n_stored, N))
29 beta_samples = np.zeros((n_stored, M))
30

31 current_lp = log_posterior(theta, beta, Y)
32 n_accept = 0
33 sample_idx = 0
34

35 total_iterations = n_warmup + n_samples
36

37 for s in range(total_iterations):
38 # Propose new theta (random walk)
39 theta_prop = theta + np.random.normal(0, proposal_sd, N)
40 theta_prop = theta_prop - theta_prop.mean() # Maintain centering
41

42 # Propose new beta (random walk)
43 beta_prop = beta + np.random.normal(0, proposal_sd, M)
44 beta_prop = beta_prop - beta_prop.mean() # Maintain centering
45

46 # Compute acceptance probability
47 prop_lp = log_posterior(theta_prop, beta_prop, Y)
48 log_alpha = prop_lp - current_lp
49

50 # Accept or reject
51 if np.log(np.random.random()) < log_alpha:
52 theta = theta_prop
53 beta = beta_prop
54 current_lp = prop_lp
55 if s >= n_warmup:
56 n_accept += 1
57

58 # Store sample (after warmup, with thinning)
59 if s >= n_warmup and (s - n_warmup) % thin == 0:
60 theta_samples[sample_idx] = theta
61 beta_samples[sample_idx] = beta
62 sample_idx += 1
63

64 acceptance_rate = n_accept / n_samples
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65 if verbose:
66 print(f"Acceptance rate: {acceptance_rate:.3f}")
67

68 return theta_samples, beta_samples, acceptance_rate
69

70 # Run MCMC
71 np.random.seed(123)
72 theta_samples, beta_samples, acc_rate = metropolis_hastings_rasch(
73 Y, n_samples=4000, n_warmup=1000, proposal_sd=0.03, thin=2
74 )
75

76 # Visualization
77 fig, axes = plt.subplots(2, 3, figsize=(6, 2))
78

79 # Trace plots for selected ability parameters
80 for i, idx in enumerate([0, 49, 99]):
81 axes[0, i].plot(theta_samples[:, idx], alpha=0.7, linewidth=0.5)
82 axes[0, i].axhline(theta_true_centered[idx], color='r', linestyle='--',
83 linewidth=1.5, label='True')
84 axes[0, i].axhline(theta_samples[:, idx].mean(), color='g', linestyle='-',
85 linewidth=1.5, label='Post. mean')
86 axes[0, i].set_xlabel('Sample')
87 axes[0, i].set_ylabel(f'$\\theta_{{{idx}}}$')
88 axes[0, i].set_title(f'Trace: Ability {idx}')
89 if i == 0:
90 axes[0, i].legend(fontsize=8)
91

92 # Posterior distributions for selected difficulty parameters
93 for i, idx in enumerate([0, 24, 49]):
94 axes[1, i].hist(beta_samples[:, idx], bins=30, density=True, alpha=0.7)
95 axes[1, i].axvline(beta_true_centered[idx], color='r', linestyle='--',
96 linewidth=2, label='True')
97 axes[1, i].axvline(beta_samples[:, idx].mean(), color='g', linestyle='-',
98 linewidth=2, label='Post. mean')
99 axes[1, i].set_xlabel(f'$\\beta_{{{idx}}}$')

100 axes[1, i].set_ylabel('Density')
101 axes[1, i].set_title(f'Posterior: Difficulty {idx}')
102 if i == 0:
103 axes[1, i].legend(fontsize=8)
104

105 plt.tight_layout()
106 plt.show()
107

108 # Posterior summary statistics
109 theta_post_mean = theta_samples.mean(axis=0)
110 theta_post_std = theta_samples.std(axis=0)
111 beta_post_mean = beta_samples.mean(axis=0)
112 beta_post_std = beta_samples.std(axis=0)
113
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114 print(f"\nPosterior summary:")
115 print(f" Mean posterior std for abilities: {theta_post_std.mean():.3f}")
116 print(f" Mean posterior std for difficulties: {beta_post_std.mean():.3f}")
117 print(f" Correlation with true abilities: {np.corrcoef(theta_true_centered,

theta_post_mean)[0,1]:.4f}")↪

118 print(f" Correlation with true difficulties: {np.corrcoef(beta_true_centered,
beta_post_mean)[0,1]:.4f}")↪

The posterior standard deviations quantify our uncertainty about each parameter. Parameters
with more information (e.g., items answered by many models, models who answered many
questions) have smaller posterior uncertainty.

4.6 Regularization and Model Selection
4.6.1 L2 Regularization as Bayesian Prior

We have seen that MAP estimation with Gaussian priors is equivalent to L2 regularization. The
regularization strength 𝜆 relates to the prior variance as 𝜆 = 1/𝜎2.

The regularized objective is:

ℓreg(𝜃, 𝛽) = ℓ(𝜃, 𝛽) − 𝜆𝜃
2

‖𝜃‖2 −
𝜆𝛽

2
‖𝛽‖2

Regularization prevents overfitting, especially when:

– Some persons have few responses (sparse data)
– Some items have extreme difficulty (near 0% or 100% pass rates)
– The model is complex (many parameters relative to data)

4.6.2 Cross-Validation for Hyperparameter Selection

How do we choose the regularization strength? Cross-validation provides a principled answer:
we hold out some data, train on the rest, and evaluate prediction performance.

1 #| label: cross-validation
2 #| autorun: true
3 #| fig-cap: "Cross-validation for selecting regularization strength."
4

5 def fit_and_evaluate(Y_train_mask, Y, lambda_param, sigma_theta=None,
sigma_beta=None):↪

6 """Fit model on training data, evaluate on held-out data."""
7 N, M = Y.shape
8

9 # Convert lambda to prior std
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10 if sigma_theta is None:
11 sigma_theta = 1 / np.sqrt(lambda_param + 1e-10)
12 if sigma_beta is None:
13 sigma_beta = 1 / np.sqrt(lambda_param + 1e-10)
14

15 # Fit on training data
16 def objective(params):
17 theta = params[:N]
18 beta = params[N:]
19 logits = theta[:, None] - beta[None, :]
20

21 # Only include training observations in likelihood
22 ll = (Y_train_mask * (Y * logits - np.log(1 + np.exp(np.clip(logits, -500,

500))))).sum()↪

23 log_prior = -0.5 * ((theta**2).sum() / sigma_theta**2 +
24 (beta**2).sum() / sigma_beta**2)
25 return -(ll + log_prior)
26

27 params0 = np.zeros(N + M)
28 result = minimize(objective, params0, method='L-BFGS-B', options={'maxiter': 100})
29

30 theta_fit = result.x[:N]
31 beta_fit = result.x[N:]
32

33 # Evaluate on held-out data
34 P = sigmoid(theta_fit[:, None] - beta_fit[None, :])
35 test_mask = 1 - Y_train_mask
36

37 # Log-likelihood on test set
38 ll_test = (test_mask * (Y * np.log(P + 1e-10) +
39 (1 - Y) * np.log(1 - P + 1e-10))).sum()
40 n_test = test_mask.sum()
41

42 return ll_test / n_test # Average log-likelihood
43

44 def cross_validate(Y, lambda_param, n_folds=5, seed=42):
45 """K-fold cross-validation for regularization strength."""
46 np.random.seed(seed)
47 N, M = Y.shape
48

49 # Create random fold assignments for entries
50 fold_assignment = np.random.randint(0, n_folds, (N, M))
51

52 cv_scores = []
53 for fold in range(n_folds):
54 train_mask = (fold_assignment != fold).astype(float)
55 score = fit_and_evaluate(train_mask, Y, lambda_param)
56 cv_scores.append(score)
57
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58 return np.mean(cv_scores), np.std(cv_scores)
59

60 # Grid search over regularization strengths
61 lambdas = [0.001, 0.01, 0.1, 0.5, 1.0, 2.0, 5.0]
62 cv_means = []
63 cv_stds = []
64

65 print("Cross-validation results:")
66 for lam in lambdas:
67 mean, std = cross_validate(Y, lam)
68 cv_means.append(mean)
69 cv_stds.append(std)
70 print(f" lambda = {lam:5.3f}: CV log-lik = {mean:.4f} +/- {std:.4f}")
71

72 # Plot
73 plt.figure()
74 plt.errorbar(lambdas, cv_means, yerr=cv_stds, fmt='o-', capsize=5, markersize=8)
75 plt.xscale('log')
76 plt.xlabel('Regularization strength ($\\lambda$)')
77 plt.ylabel('Cross-validation log-likelihood')
78 plt.title('Hyperparameter Selection via Cross-Validation')
79 plt.grid(True, alpha=0.3)
80 plt.tight_layout()
81 plt.show()
82

83 best_lambda = lambdas[np.argmax(cv_means)]
84 print(f"\nBest regularization: lambda = {best_lambda}")

4.7 Active Learning: Computerized Adaptive Testing
So far we have discussed passive learning: given a fixed dataset, estimate all parameters. But in
many AI evaluation scenarios, we can choose which questions to ask. This is active learning, and
Computerized Adaptive Testing (CAT) is its primary instantiation in psychometrics.

4.7.1 The CAT Framework

The key insight of CAT is that not all questions are equally informative for all test-takers. A
very easy question provides little information about a high-ability model—we already know it
will likely answer correctly. Similarly, a very hard question provides little information about a
low-ability model.

The most informative questions are those where the model has roughly a 50% chance of success.
CAT iteratively:

1. Select the most informative question given current ability estimate
2. Administer the question and observe the response
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3. Update the ability estimate based on the response
4. Check if stopping criterion is met; if not, return to step 1

Exclamation WHY FISHER INFORMATION?

Fisher information measures how much a response to item 𝑗 tells us about 𝜃:

– High information: The item is well-matched to the ability level
– Low information: The item is too easy or too hard

Intuitively, asking a genius to solve 1 + 1 or a beginner to prove the Riemann hypothesis provides little
information. The most informative items are those where the model has about 50% chance of success.

4.7.2 Fisher Information for Item Selection

The Fisher information for item 𝑗 at ability 𝜃 in the Rasch model is:

𝐼𝑗(𝜃) = 𝑃𝑗(𝜃) ⋅ (1 − 𝑃𝑗(𝜃)) (4.10)

where 𝑃𝑗(𝜃) = 𝜎(𝜃 − 𝛽𝑗).

This is maximized when 𝑃𝑗(𝜃) = 0.5, which occurs when 𝜃 = 𝛽𝑗. Thus, the optimal item to
administer is the one whose difficulty most closely matches the current ability estimate.

1 #| label: fisher-information
2 #| autorun: true
3 #| fig-cap: "Fisher information as a function of ability for items of different

difficulties."↪

4

5 # Plot Fisher information curves
6 theta_range = np.linspace(-4, 4, 200)
7

8 fig, axes = plt.subplots(1, 2, figsize=(6, 2))
9

10 # Information curves for different item difficulties
11 difficulties = [-2, -1, 0, 1, 2]
12 colors = plt.cm.viridis(np.linspace(0, 1, len(difficulties)))
13

14 for beta_j, color in zip(difficulties, colors):
15 P = sigmoid(theta_range - beta_j)
16 info = P * (1 - P)
17 axes[0].plot(theta_range, info, color=color, linewidth=2,
18 label=f'$\\beta_j = {beta_j}$')
19

20 axes[0].set_xlabel('Ability ($\\theta$)')
21 axes[0].set_ylabel('Fisher Information')
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22 axes[0].set_title('Item Information Curves')
23 axes[0].legend()
24 axes[0].grid(True, alpha=0.3)
25 axes[0].axvline(0, color='gray', linestyle=':', alpha=0.5)
26

27 # Cumulative information from multiple items
28 theta_test = 0.5 # Example ability
29 n_items = 20
30

31 # Adaptive selection: choose items closest to current estimate
32 beta_available = beta_true.copy()
33 adaptive_info = [0]
34 theta_estimate = 0 # Start with prior mean
35

36 for t in range(n_items):
37 # Select item with difficulty closest to current estimate
38 distances = np.abs(beta_available - theta_estimate)
39 best_idx = np.argmin(distances)
40 beta_selected = beta_available[best_idx]
41

42 # Information from this item
43 P = sigmoid(theta_test - beta_selected)
44 info = P * (1 - P)
45 adaptive_info.append(adaptive_info[-1] + info)
46

47 # Remove selected item
48 beta_available = np.delete(beta_available, best_idx)
49

50 # Update estimate (simplified: use true ability for demo)
51 theta_estimate = theta_test # In practice, we'd use MAP update
52

53 # Random selection
54 np.random.seed(42)
55 random_order = np.random.permutation(len(beta_true))[:n_items]
56 random_info = [0]
57 for j in random_order:
58 P = sigmoid(theta_test - beta_true[j])
59 info = P * (1 - P)
60 random_info.append(random_info[-1] + info)
61

62 axes[1].plot(range(n_items + 1), adaptive_info, 'g-', linewidth=2, label='Adaptive')
63 axes[1].plot(range(n_items + 1), random_info, 'b-', linewidth=2, label='Random')
64 axes[1].set_xlabel('Number of Items')
65 axes[1].set_ylabel('Cumulative Fisher Information')
66 axes[1].set_title(f'Information Accumulation ($\\theta = {theta_test}$)')
67 axes[1].legend()
68 axes[1].grid(True, alpha=0.3)
69

70 plt.tight_layout()
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71 plt.show()

4.7.3 CAT Implementation

Let us implement a complete CAT procedure:

1 #| label: cat-simulation
2 #| autorun: true
3 #| fig-cap: "CAT efficiency compared to random item selection for reaching target

reliability."↪

4

5 def cat_simulation(theta_true_i, beta, n_items_max=30, reliability_threshold=0.95):
6 """
7 Simulate CAT for a single test-taker.
8

9 Parameters
10 ----------
11 theta_true_i : float
12 True ability of the test-taker
13 beta : ndarray
14 Item difficulties (pre-calibrated)
15 n_items_max : int
16 Maximum number of items to administer
17 reliability_threshold : float
18 Stop when reliability exceeds this threshold
19

20 Returns
21 -------
22 dict with results
23 """
24 M = len(beta)
25

26 # Track administered items and responses
27 administered = []
28 responses = []
29

30 # Prior: theta ~ N(0, 1)
31 theta_hat = 0.0
32 prior_var = 1.0
33

34 theta_history = [theta_hat]
35 reliability_history = [0.0]
36 se_history = [1.0]
37

38 available_items = list(range(M))
39

40 for t in range(min(n_items_max, M)):
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41 # Select item with maximum Fisher information at current estimate
42 best_item = None
43 best_info = -np.inf
44

45 for j in available_items:
46 P_j = sigmoid(theta_hat - beta[j])
47 info_j = P_j * (1 - P_j)
48 if info_j > best_info:
49 best_info = info_j
50 best_item = j
51

52 # Administer item (simulate response)
53 P_true = sigmoid(theta_true_i - beta[best_item])
54 response = int(np.random.random() < P_true)
55

56 administered.append(best_item)
57 responses.append(response)
58 available_items.remove(best_item)
59

60 # Update ability estimate using MAP (Newton-Raphson)
61 for _ in range(10):
62 P_vec = sigmoid(theta_hat - np.array([beta[j] for j in administered]))
63

64 # Gradient: sum of residuals minus prior contribution
65 grad = np.sum(np.array(responses) - P_vec) - theta_hat / prior_var
66

67 # Hessian: negative sum of P(1-P) minus prior contribution
68 hess = -np.sum(P_vec * (1 - P_vec)) - 1 / prior_var
69

70 if abs(hess) > 1e-10:
71 theta_hat = theta_hat - grad / hess
72

73 # Compute posterior variance (inverse of observed information + prior
precision)↪

74 total_info = np.sum([sigmoid(theta_hat - beta[j]) * (1 - sigmoid(theta_hat -
beta[j]))↪

75 for j in administered])
76 posterior_var = 1 / (1/prior_var + total_info)
77 se = np.sqrt(posterior_var)
78

79 # Reliability: proportion of variance explained
80 # R = 1 - error_var / total_var, where total_var = 1 (prior)
81 reliability = 1 - posterior_var / prior_var
82

83 theta_history.append(theta_hat)
84 reliability_history.append(reliability)
85 se_history.append(se)
86

87 # Check stopping criterion
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88 if reliability >= reliability_threshold:
89 break
90

91 return {
92 'theta_hat': theta_hat,
93 'theta_true': theta_true_i,
94 'n_items': len(administered),
95 'administered': administered,
96 'responses': responses,
97 'reliability_history': reliability_history,
98 'theta_history': theta_history,
99 'se_history': se_history,

100 'final_reliability': reliability_history[-1],
101 'final_se': se_history[-1]
102 }
103

104 def random_selection_simulation(theta_true_i, beta, n_items_max=30,
reliability_threshold=0.95):↪

105 """
106 Simulate random item selection for comparison.
107 """
108 M = len(beta)
109

110 # Random order
111 item_order = list(np.random.permutation(M)[:n_items_max])
112

113 theta_hat = 0.0
114 prior_var = 1.0
115

116 administered = []
117 responses = []
118 reliability_history = [0.0]
119 theta_history = [theta_hat]
120

121 for j in item_order:
122 # Simulate response
123 P_true = sigmoid(theta_true_i - beta[j])
124 response = int(np.random.random() < P_true)
125

126 administered.append(j)
127 responses.append(response)
128

129 # Update ability estimate
130 for _ in range(10):
131 P_vec = sigmoid(theta_hat - np.array([beta[k] for k in administered]))
132 grad = np.sum(np.array(responses) - P_vec) - theta_hat / prior_var
133 hess = -np.sum(P_vec * (1 - P_vec)) - 1 / prior_var
134 if abs(hess) > 1e-10:
135 theta_hat = theta_hat - grad / hess
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136

137 # Posterior variance and reliability
138 total_info = np.sum([sigmoid(theta_hat - beta[k]) * (1 - sigmoid(theta_hat -

beta[k]))↪

139 for k in administered])
140 posterior_var = 1 / (1/prior_var + total_info)
141 reliability = 1 - posterior_var / prior_var
142

143 reliability_history.append(reliability)
144 theta_history.append(theta_hat)
145

146 if reliability >= reliability_threshold:
147 break
148

149 return {
150 'n_items': len(administered),
151 'reliability_history': reliability_history,
152 'theta_history': theta_history,
153 'theta_hat': theta_hat,
154 'final_reliability': reliability_history[-1]
155 }
156

157 # Run simulations for multiple test-takers
158 np.random.seed(42)
159 n_test_takers = 100
160 theta_test_sample = np.random.normal(0, 1, n_test_takers)
161

162 cat_results = []
163 random_results = []
164

165 for theta_i in theta_test_sample:
166 cat_results.append(cat_simulation(theta_i, beta_true))
167 random_results.append(random_selection_simulation(theta_i, beta_true))
168

169 cat_items = [r['n_items'] for r in cat_results]
170 random_items = [r['n_items'] for r in random_results]
171

172 # Plot comparison
173 fig, axes = plt.subplots(1, 3, figsize=(6, 2))
174

175 # Bar chart: average items needed
176 methods = ['Random', 'CAT']
177 means = [np.mean(random_items), np.mean(cat_items)]
178 stds = [np.std(random_items), np.std(cat_items)]
179

180 bars = axes[0].bar(methods, means, yerr=stds, capsize=5, alpha=0.7,
181 color=['#1f77b4', '#2ca02c'])
182 axes[0].set_ylabel('Items to reach 95% reliability')
183 axes[0].set_title('Efficiency: CAT vs Random')
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184 axes[0].grid(True, alpha=0.3, axis='y')
185

186 # Add values on bars
187 for bar, mean, std in zip(bars, means, stds):
188 axes[0].text(bar.get_x() + bar.get_width()/2, bar.get_height() + std + 0.5,
189 f'{mean:.1f}', ha='center', va='bottom', fontsize=11)
190

191 # Reliability trajectories for a single example
192 example_idx = 50
193 example_cat = cat_results[example_idx]
194 example_random = random_results[example_idx]
195

196 axes[1].plot(example_random['reliability_history'], 'b-', linewidth=2, label='Random')
197 axes[1].plot(example_cat['reliability_history'], 'g-', linewidth=2, label='CAT')
198 axes[1].axhline(0.95, color='r', linestyle='--', linewidth=1.5, label='Threshold

(0.95)')↪

199 axes[1].set_xlabel('Number of items administered')
200 axes[1].set_ylabel('Reliability')
201 axes[1].set_title(f'Reliability Growth (example: $\\theta$ =

{theta_test_sample[example_idx]:.2f})')↪

202 axes[1].legend()
203 axes[1].grid(True, alpha=0.3)
204

205 # Histogram of items needed
206 axes[2].hist(random_items, bins=15, alpha=0.6, label='Random', color='#1f77b4')
207 axes[2].hist(cat_items, bins=15, alpha=0.6, label='CAT', color='#2ca02c')
208 axes[2].set_xlabel('Number of items')
209 axes[2].set_ylabel('Frequency')
210 axes[2].set_title('Distribution of Test Lengths')
211 axes[2].legend()
212 axes[2].grid(True, alpha=0.3)
213

214 plt.tight_layout()
215 plt.show()
216

217 # Summary statistics
218 efficiency_gain = (np.mean(random_items) - np.mean(cat_items)) / np.mean(random_items)

* 100↪

219

220 print(f"\nSummary:")
221 print(f" Random selection: {np.mean(random_items):.1f} +/- {np.std(random_items):.1f}

items")↪

222 print(f" CAT: {np.mean(cat_items):.1f} +/- {np.std(cat_items):.1f} items")
223 print(f" Efficiency gain: {efficiency_gain:.1f}% fewer items with CAT")

4.7.4 Stopping Rules

CAT can use various stopping criteria:
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1. Reliability threshold: Stop when measurement precision reaches a target (e.g., 𝑅 ≥ 0.95)
2. Standard error threshold: Stop when 𝑆𝐸( ̂𝜃) ≤ 0.3
3. Fixed length: Administer exactly 𝐾 items
4. Information threshold: Stop when additional items would provide negligible information

For AI evaluation, practical constraints also matter:

– Cost: Each API call has a cost
– Time: Evaluation must complete within a deadline
– Contamination: Administering too many items risks benchmark leakage

INFO CAT FOR AI EVALUATION

Traditional CAT assumes deterministic responses: a human test-taker gives the same answer if asked the same
question twice. AI models may or may not be deterministic depending on temperature and sampling settings.

For deterministic evaluation (temperature=0), CAT works directly. For stochastic evaluation, we may need
multiple samples per item, or methods that account for response variability.

CAT also requires pre-calibrated item parameters. In a cold-start scenario (new benchmark), we must first
collect data on a pilot sample of models before CAT can be deployed.

4.8 Generalization Experiments
To evaluate the robustness and transferability of learned factor models, we train and test them
under various masking schemes, each representing a different notion of generalization. These
masks determine which parts of the response matrix 𝑌 are visible during training and which
are held out for evaluation.

4.8.1 Masking Schemes for Evaluation

Masking Type Train Set Test Set Purpose

Entry-wise random 80% random entries 20% random entries Interpolation
under
missing-at-random

Row holdout (random) 80% of models, all
items

20% of models, all
items

Generalization to
unseen models

Row holdout (shifted) Slice of models
(small→large)

Disjoint slice Covariate-shift
generalization

Column holdout (random) All models, 80% of
items

All models, 20% of
items

Generalization to
unseen items

Column holdout (shifted) Subset of benchmarks Held-out
benchmarks

Cross-domain
transfer
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Masking Type Train Set Test Set Purpose

Row-column block
(L-mask)

𝑅𝑡𝑟 × 𝐶𝑡𝑟 𝑅𝑡𝑒 × 𝐶𝑡𝑒 Compositional
generalization

Temporal split Models before cutoff Models after cutoff Temporal
generalization

These settings parallel psychometric validation tests where new examinees, items, or contexts
probe the invariance of latent constructs.

4.8.2 Implementation of Masking Functions

1 import torch
2

3 def random_mask(data_idtor, pct=0.8):
4 """Entry-wise random masking."""
5 train_idtor = torch.bernoulli(data_idtor * pct).int()
6 test_idtor = data_idtor.int() - train_idtor
7 return train_idtor, test_idtor
8

9 def model_mask(data_idtor, pct_models=0.8, exposure_rate=0.3):
10 """Row holdout: hold out unseen models."""
11 train_row_mask = torch.bernoulli(torch.ones(data_idtor.shape[0]) *

pct_models).bool()↪

12 train_idtor = torch.zeros_like(data_idtor).int()
13 train_idtor[train_row_mask, :] = data_idtor[train_row_mask, :]
14 train_idtor[~train_row_mask, :], _ = random_mask(data_idtor[~train_row_mask, :],

pct=exposure_rate)↪

15 test_idtor = data_idtor - train_idtor
16 return train_idtor, test_idtor
17

18 def item_mask(data_idtor, pct_items=0.8, exposure_rate=0.3):
19 """Column holdout: hold out unseen items."""
20 train_col_mask = torch.bernoulli(torch.ones(data_idtor.shape[1]) *

pct_items).bool()↪

21 train_idtor = torch.zeros_like(data_idtor).int()
22 train_idtor[:, train_col_mask] = data_idtor[:, train_col_mask]
23 train_idtor[:, ~train_col_mask], _ = random_mask(data_idtor[:, ~train_col_mask],

pct=exposure_rate)↪

24 test_idtor = data_idtor - train_idtor
25 return train_idtor, test_idtor
26

27 def L_mask(data_idtor, pct_models=0.8, pct_items=0.8):
28 """Row-column block (L-mask): compositional generalization."""
29 train_row_mask = torch.bernoulli(torch.ones(data_idtor.shape[0]) *

pct_models).bool()↪
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30 train_col_mask = torch.bernoulli(torch.ones(data_idtor.shape[1]) *
pct_items).bool()↪

31 train_idtor = torch.zeros_like(data_idtor).int()
32 train_idtor[train_row_mask][:, train_col_mask] = data_idtor[train_row_mask][:,

train_col_mask]↪

33 test_idtor = data_idtor - train_idtor
34 test_idtor[train_row_mask, :] = 0
35 test_idtor[:, train_col_mask] = 0
36 return train_idtor, test_idtor

4.8.3 Two-Stage Training for Holdout Generalization

To avoid data contamination in row and column holdout experiments, we use a two-stage
training procedure:

4.8.3.1 Row Holdout: Estimating Parameters for Unseen Models

When testing generalization to unseen models, we:

1. Stage 1: Train on known models to learn item parameters (𝑉 , 𝑍)
2. Stage 2: Freeze (𝑉 , 𝑍) and estimate ability parameters 𝑈 for held-out models using their

limited exposed responses

This ensures item parameters are learned without information from test models.

1 # Stage 1: Train on known models
2 test_row = test_idtor.max(axis=1).values # Identify held-out models
3 model_stage1 = train_model(Y[~test_row, :], mask=train_idtor[~test_row, :])
4

5 # Freeze V, Z from Stage 1
6 V_frozen = model_stage1.V.detach()
7 Z_frozen = model_stage1.Z.detach()
8

9 # Stage 2: Estimate U for unseen models with frozen item parameters
10 model_stage2 = train_model(Y[test_row, :], mask=train_idtor[test_row, :],
11 V_fixed=V_frozen, Z_fixed=Z_frozen)

4.8.3.2 Column Holdout: Estimating Parameters for Unseen Items

When testing generalization to unseen items, we:

1. Stage 1: Train on known items to learn model parameters 𝑈
2. Stage 2: Freeze 𝑈 and estimate item parameters (𝑉 , 𝑍) for held-out items
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1 # Stage 1: Train on known items
2 test_col = test_idtor.max(axis=0).values # Identify held-out items
3 model_stage1 = train_model(Y[:, ~test_col], mask=train_idtor[:, ~test_col])
4

5 # Freeze U from Stage 1
6 U_frozen = model_stage1.U.detach()
7

8 # Stage 2: Estimate V, Z for unseen items with frozen model parameters
9 model_stage2 = train_model(Y[:, test_col], mask=train_idtor[:, test_col],

10 U_fixed=U_frozen)

INFO WHY TWO-STAGE TRAINING?

The two-stage procedure prevents information leakage:

– Row holdout: Item parameters learned from training models should not contain information about test
models

– Column holdout: Model parameters learned from training items should not contain information about test
items

This mirrors the real-world scenario where we want to evaluate new models on pre-calibrated items, or calibrate
new items using established models.

4.8.4 Evaluation Across Masking Schemes

For each masking scheme, we compute AUC on the held-out entries:

1 from torchmetrics import AUROC
2

3 masking_schemes = {
4 "entry_random": random_mask,
5 "row_holdout": model_mask,
6 "col_holdout": item_mask,
7 "L_mask": L_mask,
8 }
9

10 results = {}
11 auroc = AUROC(task="binary")
12

13 for name, mask_fn in masking_schemes.items():
14 train_mask, test_mask = mask_fn(data_idtor)
15

16 # Train model (with two-stage for row/col holdout)
17 model = train_with_appropriate_stages(Y, train_mask, test_mask, name)
18

19 # Evaluate on held-out entries
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20 P_hat = model().detach()
21 auc = auroc(P_hat[test_mask.bool()], Y[test_mask.bool()])
22 results[name] = auc.item()
23 print(f"{name}: AUC = {auc:.3f}")

The factor model typically achieves AUC of 92-97% on random masking across benchmarks,
demonstrating strong predictive power. Performance on row and column holdout tests the
model’s ability to generalize to new models and new items, respectively.

4.9 Discussion Questions
1. Identifiability and Interpretation: In AI evaluation, should we anchor the ability scale by

fixing one model (e.g., GPT-4 = 0) or by centering all models? What are the implications
for interpreting ability scores over time as new models are released?

2. Bayesian vs Frequentist: When is Bayesian inference preferred over MLE for AI bench-
mark analysis? Consider scenarios with limited data, extreme scores, or the need for
uncertainty quantification.

3. Adaptive Testing for AI: Current AI benchmarks test all models on all questions. What are
the practical challenges in implementing CAT for AI evaluation? Consider: determinism
of model responses, cost of API calls, benchmark contamination.

4. Transfer of Item Parameters: If we calibrate item difficulties on one set of models (e.g.,
2023 models), can we use these parameters to evaluate 2024 models? What assumptions
does this require, and when might they fail?

5. Multidimensional Extensions: The chapter focused on unidimensional models (single
ability). How would the learning procedures change for multidimensional factor models?
What additional challenges arise?

4.10 Bibliographic Notes
4.10.1 Maximum Likelihood Estimation

The theory of maximum likelihood for IRT models is developed comprehensively in Lord
and Novick (1968) and (?). The joint MLE approach and its limitations (incidental parameter
problem) are discussed in (?). For modern computational approaches, see (?).

4.10.2 Conditional and Marginal MLE

Conditional MLE for the Rasch model was developed by (?), who proved consistency and
derived the elementary symmetric functions needed for computation. Marginal MLE was
introduced by (?) and popularized by (?) using the EM algorithm.
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4.10.3 EM Algorithm

The general EM algorithm was formalized by (?). Its application to IRT is detailed in (?). For
modern treatments, see (?).

4.10.4 Bayesian IRT

Bayesian approaches to IRT were pioneered by (?) and advanced using Gibbs sampling by
Algorithm ?? . Modern references include (?) and the software documentation for Stan (?).

4.10.5 Computerized Adaptive Testing

CAT has a rich history beginning with (?). The Fisher information criterion for item selection
was developed by (?). For multidimensional CAT, see (?) and (?). Applications to AI evaluation
are emerging; see (?) for recent work.

4.10.6 Optimization Methods

L-BFGS is described in (?). For deep learning optimizers applied to psychometric models, see
(?) for Adam.

4.11 Exercises
4.11.1 Theoretical Exercises

Exercise 2.1 (⋆): Derive the gradient of the Rasch model log-likelihood with respect to 𝜃𝑖.
Show that it equals the sum of residuals: 𝜕ℓ

𝜕𝜃𝑖
= ∑𝑗(𝑌𝑖𝑗 − 𝑃𝑖𝑗).

Exercise 2.2 (⋆⋆): Prove that the Hessian matrix of the Rasch log-likelihood is negative semi-
definite, ensuring the log-likelihood is concave.

Exercise 2.3 (⋆⋆): Show that for the Rasch model, the Fisher information for item 𝑗 at ability 𝜃
is 𝐼𝑗(𝜃) = 𝑃𝑗(1 − 𝑃𝑗), and that this is maximized when 𝜃 = 𝛽𝑗.

Exercise 2.4 (⋆⋆⋆): Derive the EM algorithm for the 2PLmodel. What additional complications
arise compared to the Rasch model due to the discrimination parameters?

Exercise 2.5 (⋆⋆): Show that L2 regularization on the parameters is equivalent toMAP estimation
with Gaussian priors. What is the relationship between the regularization strength 𝜆 and the
prior variance 𝜎2?
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4.11.2 Computational Exercises

Exercise 2.6 (⋆⋆): Implement conditional MLE for the Rasch model. Use the fact that the
conditional likelihood depends only on item parameters and can be computed using elementary
symmetric functions.

Exercise 2.7 (⋆ ⋆ ⋆): Implement a Gibbs sampler for the Rasch model that alternates between: -
Sampling 𝜃𝑖 ∣ 𝑌 , 𝛽 for each person (using slice sampling) - Sampling 𝛽𝑗 ∣ 𝑌 , 𝜃 for each item

Compare the posterior estimates to those from Metropolis-Hastings.

Exercise 2.8 (⋆⋆⋆): Extend the CAT simulation to handle a multidimensional factor model with
𝐾 = 2 dimensions. Implement D-optimal item selection using 𝑗∗ = argmax𝑗 det(∑𝜏 𝐼 (𝜏)

𝑗 ).

4.11.3 Discussion Exercises

Exercise 2.9: Compare the convergence of gradient descent, L-BFGS, and Adam on a Rasch
model estimation problem. Which converges fastest? Which is most robust to different initial-
izations?

Exercise 2.10: Design a stopping rule for CAT that balances measurement precision with
evaluation cost. How would you adapt this for AI evaluation where API calls have monetary
costs?

Exercise 2.11: Investigate the sensitivity of CAT to misspecification of item parameters. If the
calibration sample differs systematically from the test population, how does CAT performance
degrade? Simulate this scenario and quantify the effect.
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Large language models (LLMs) are often evaluated by running them on benchmarks and asking
an AI judge to score their answers.
However, judging introduces bias and high cost — each (model, question) pair must be queried
and scored.

This tutorial walks through an alternative framework — Prediction-Powered Evaluation (PPE)
— which predicts correctness without running models or judges.
It combines factor analysis and semantic prediction to estimate correctness probabilities for
unseen questions or unseen models.

6.1 Motivation
6.1.1 Limitations of Judge-Based Evaluation

Judge-based approaches are expensive and biased by surface-level style features (e.g., bulleting,
verbosity).
We formalize two approaches to measuring correctness:

𝑝𝜃(𝑌𝑖𝑗 = 1 ∣ 𝑖, 𝑗, 𝐷train) = 𝜎(𝐻𝑖𝑗(𝜃))

and the judging variant:

𝑝𝜃(𝑌𝑖𝑗 = 1 ∣ 𝑖, 𝑗, 𝑘, 𝐷train) = 𝔼𝑘[𝑝𝜃(𝑌𝑖𝑗 = 1 ∣ 𝑖, 𝑗, 𝑘, 𝐷train)]

Let 𝑆 denote style (e.g., response length).
Then the judge model induces a bias pathway 𝑆 → 𝑅 → ̂𝑌judge,
while the prediction-powered correctness model ̂𝑌corr remains unbiased:

Biasjudge(𝑠) = 𝐸[ ̂𝑌judge − 𝑌 ∗ ∣ 𝑆 = 𝑠], Biascorr(𝑠) = 0.

This framework enables cost-efficient, style-invariant evaluation, avoiding the stylistic con-
founds of AI judges.
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6.1.2 The Hardness of Mapping from Semantics to Behavior

Even if we could perfectly represent question meaning, semantic similarity does not guarantee
behavioral similarity.
Two questions that appear linguistically close may elicit very different correctness patterns
across models.

We compare:

– Semantic similarity: cosine similarity between question embeddings

– Behavioral similarity: tetrachoric correlation between model responses

Corrsemantic(𝑖, 𝑗) = cos(𝐸𝑖, 𝐸𝑗), Corrbehavioral(𝑖, 𝑗) = TetraCorr(𝑌⋅𝑖, 𝑌⋅𝑗)

Figure 6.1
Semantic vs behavioral similarity between question pairs. Even near-identical embeddings (cosine > 0.99) show
random behavioral correlations.

As shown in Figure 4.1,
there is no consistent relationship between these twomeasures— evenwhen cos(𝐸𝑖, 𝐸𝑗) > 0.99,
the behavioral correlation can range from −1 to +1.
This randomness reveals that semantic embeddings are poor instruments for explaining or
predicting response behavior.

Observation: Semantically similar questions (cosine > 0.99) exhibit nearly random behavioral
correlations (−1 to +1),
showing that linguistic proximity does not imply behavioral equivalence.

6.2 Stage 1 — Factor Model Pretraining
We first learn latent behavioral factors (𝑈, 𝑉 , 𝑍) from response data 𝑌𝑖𝑗.

𝑝(𝑌𝑖𝑗 = 1 ∣ 𝑈𝑖, 𝑉𝑗, 𝑍𝑗) = 𝜎(𝑈⊤
𝑖 𝑉𝑗 + 𝑍𝑗)
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Each model 𝑖 has latent ability vector 𝑈𝑖, and each question 𝑗 has parameters 𝑉𝑗 and difficulty
bias 𝑍𝑗.

1 from model import JML_trainer
2 from util import standardize_V_Z_U_promax
3

4 Y_missing = torch.load("data/Y_matrix.pt")
5 train_mask, test_mask = random_mask((Y_missing != -1).float(), pct=0.8)
6 model_FA = JML_trainer(Y_missing, K=4, mask=train_mask, device="cuda:0", is_map=True)
7

8 V, Z, U = standardize_V_Z_U_promax(model_FA.U, model_FA.V, model_FA.Z)

The factor model captures the behavioral structure of models across benchmarks and serves as
the foundation for prediction.

6.3 Stage 2 — Prediction-Powered Correctness Model
The next step learns to predict behavioral parameters directly from metadata and semantics,
without observing responses.

Two parallel predictors are trained:

– Item-side predictor 𝑓𝑉: maps question embeddings to ( ̂𝑉𝑗, ̂𝑍𝑗)

– Model-side predictor 𝑓𝑈: maps model features to ̂𝑈𝑖

These predictors allow cold-start evaluation, predicting new entries in the response matrix 𝑌.

6.3.1 Predicting Item Embeddings from Question Semantics

We train a neural network to map question embeddings 𝐸𝑗 ∈ ℝ4096 to latent parameters:

[ ̂𝑉𝑗, ̂𝑍𝑗] = 𝑓𝜃(𝐸𝑗)

1 from model import embedding_V
2 from torch.distributions import Bernoulli
3

4 K = 4
5 model_V = embedding_V(input_dim=4096, output_dim=K+1).to(device)
6 optimizer = torch.optim.Adam(model_V.parameters(), lr=1e-3)
7

8 for epoch in range(2000):
9 pred = model_V(E_train) # [n_items, K+1]

10 pred_V, pred_Z = pred[:, :K], pred[:, K:]
11 probs = torch.sigmoid(U @ pred_V.T + pred_Z.T)
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12 loss = -Bernoulli(probs=probs[train_mask]).log_prob(Y[train_mask].float()).mean()
13 optimizer.zero_grad(); loss.backward(); optimizer.step()

The loss minimizes the Bernoulli log-likelihood using fixed 𝑈 from the factor model.

6.3.2 Predicting Model Embeddings from Metadata

Each model has a 24-dimensional feature vector describing its scale, architecture, and release
time.
We fit a linear transformation to predict 𝑈:

̂𝑈𝑖 = 𝑓𝜙(𝐹𝑖) = 𝐹𝑖𝑊𝑈

1 from model import embedding_U
2

3 model_U = embedding_U(input_dim=24, output_dim=K).to(device)
4 optimizer = torch.optim.Adam(model_U.parameters(), lr=1e-3)
5

6 for epoch in range(1000):
7 pred_U = model_U(F_train)
8 loss = (pred_U - U_train).abs().mean()
9 optimizer.zero_grad(); loss.backward(); optimizer.step()

This simple mapping encourages interpretability and stable convergence.

6.4 Stage 3 — Cold-Start Evaluation
Once we have learned both mappings, we can reconstruct correctness probabilities:

̂𝑃𝑖𝑗 = 𝜎( ̂𝑈⊤
𝑖

̂𝑉𝑗 + ̂𝑍𝑗)

and evaluate on unseen rows or columns of 𝑌.

1 from torchmetrics import AUROC
2 auroc = AUROC(task="binary")
3

4 P_hat = torch.sigmoid(U_hat @ V_hat.T + Z_hat.T)
5 auc = auroc(P_hat[test_mask].cpu(), Y[test_mask].cpu())
6 print(f"AUC (zero-shot): {auc.item():.3f}")

Typical results:
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Split AUC

randcol–randcol 0.804
randrow–randrow 0.848

These confirm that the semantic–behavioral mapping generalizes well.

6.5 Mapping Semantic to Behavioral Space
To study whether semantically similar questions behave similarly,
we compute cosine similarity of question embeddings and tetrachoric correlation of their
responses.

1 from util import tetrachoric_matrix_torch
2 import seaborn as sns, matplotlib.pyplot as plt
3

4 R = tetrachoric_matrix_torch(Y)
5 cosine = torch.corrcoef(V.T)
6

7 sns.scatterplot(x=cosine.flatten(), y=R.flatten(), s=5, alpha=0.5)
8 plt.xlabel("Cosine Similarity (semantic)")
9 plt.ylabel("Tetrachoric Correlation (behavior)")

10 plt.title("Semantic vs Behavioral Similarity")

Observation: Even highly similar questions (cosine > 0.99) exhibit nearly random behavioral
correlations (−1 to +1),
showing that semantic proximity is a poor instrument for behavioral prediction.

6.6 Iterative Filtering via Tetrachoric Correlation
We remove inconsistent or adversarial items via iterative filtering.

1 from tqdm import trange
2

3 Y_filtered = Y.clone()
4 for t in trange(19):
5 R = tetrachoric_matrix_torch(Y_filtered)
6 p_neg = (R < 0).float().mean(1)
7 bad_items = torch.topk(p_neg, 500).indices
8 mask = torch.ones(Y_filtered.shape[1], dtype=bool)
9 mask[bad_items] = False

10 Y_filtered = Y_filtered[:, mask]

After 19 rounds:
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– Retained: 11,243 of 20,743 questions (~54%)

– Negative correlations: ↓ from 23% → 1.67%

– Benchmark composition: stable across iterations

This step improves inter-item consistency and downstream factor modeling.

6.7 Generalization to New Models
We evaluate generalization to unseen models under the randrow–randrow split.

Predict 𝑈𝑡𝑒𝑠𝑡 from metadata and evaluate:

1 U_pred = model_U(F_test)
2 P_hat = torch.sigmoid(U_pred @ V_frozen.T + Z_frozen.T)
3 auc = auroc(P_hat[test_idtor[test_row,:]].cpu(),

Y[test_row,:][test_idtor[test_row,:]].cpu())↪

4 print(f"randrow–randrow AUC: {auc.item():.3f}")

Result:
AUC � 0.8483 with 𝐾 = 1, confirming strong linear predictability of model behavior from
simple metadata.

6.8 Summary of the Prediction-Powered Framework

Component Input Output Purpose

Factor model Response matrix 𝑌 𝑈, 𝑉 , 𝑍 Extract latent behavior
Semantic
predictor

Question
embeddings 𝐸𝑗

[ ̂𝑉𝑗, ̂𝑍𝑗] Generalize to unseen questions

Model predictor Metadata 𝐹𝑖
̂𝑈𝑖 Generalize to unseen models

Correctness
predictor

̂𝑈𝑖, ̂𝑉𝑗, ̂𝑍𝑗
̂𝑃𝑖𝑗 Predict correctness without

judging

This pipeline allows reliable, low-cost, and bias-resistant measurement of model performance
under cold-start conditions.
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6.9 Implications
– Efficiency: Predicts correctness for new benchmarks without running any model queries.

– Reliability: Invariant to stylistic confounds.

– Scalability: Cost scales as 𝑂(𝑁 + 𝑀) instead of 𝑂(𝑁𝑀).

– Interpretability: Latent factors preserve behavioral semantics for explainable evaluation.

This tutorial is based on the paper “Measuring Without Judging: Prediction-Powered
Cold-Start Evaluation” (Anonymous, 2025).
It demonstrates how factor models, semantic mapping, and adaptive filtering jointly enable a
new paradigm of scalable AI evaluation.



7 CONCLUSION
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analytic flexibility, see also p-hacking
anonymization, see also de-identification
APA, see American Psychological Association

(APA)

blinding, see masking
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Inventory

Cohen’s d, see also standardized mean difference
(SMD)

DAG, see directed acyclic graph (DAG)
de-identification, see also anonymization

p-hacking, see also analytic flexibility

standardized mean difference (SMD), see also
Cohen’s d
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